...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory
【24h】

Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory

机译:钒的熔化曲线高达256GPa:实验与理论之间的一致性

获取原文
获取原文并翻译 | 示例
           

摘要

The melting curve of vanadium at high pressure and temperature (P-T) is of great interest to our understanding of d-orbital transition metals with simple crystal structures at extreme P-T conditions. Here we have investigated the melting curve and crystal structures of polycrystalline vanadium at high P-T using synchrotron x-ray diffraction (XRD) in laser-heated diamond anvil cells (LH DACs) up to ~100 GPa and ~4400 K, a two-stage light-gas gun with in situ shock temperature measurements up to ~256 GPa and ~6200 K. and ab initio molecular dynamics (AIMD) with density functional theory computations up to ~200 GPa. The occurrence of the diffuse scattering signals in high P-T XRD patterns is used as the primary criterion to determine the melting curve of body-centered cubic (bcc) vanadium up to ~100 GPa in LH DACs. Analysis of thermal radiation spectra of shocked vanadium using a quasispectral pyrometer constrains the melting curve up to ~246 GPa and ~5830 K, which is consistent with our static results using the Simon equation. The present static and dynamic experiments on the melting curve of vanadium are consistent with our AIMD simulations with the two-phase melting modeling, and are overall consistent with other theoretical simulations using the Z method. The results reconcile the recently reported theoretical discrepancy, and refute a higher melting curve report given by self-consistent ab initio lattice dynamics calculations. The consistencies among our studies indicate that one does not have to invoke superheating as a hypothesis to describe the solid-liquid equilibrium boundary of vanadium as an explanation for static vs dynamic experimental results. Our static and dynamic results with in situ diagnostics of melting and two-phase AIMD simulation have implications for studying melting curves of other d-orbital transition metals and their alloys at extreme P-T conditions.
机译:在高压和温度(P-T)下钒的熔化曲线对我们对极端P-T条件下的简单晶体结构的D轨道过渡金属感兴趣。在这里,我们研究了使用激光加热的金刚石砧座(LH DAC)中的同步X射线衍射(XRD)在高PT下的多晶钒的熔化曲线和晶体结构,高达〜100GPa,〜4400 k,两阶段轻气枪,原位休克温度测量高达约256 GPa和〜6200 K.和AB Initio分子动力学(AIMD),具有密度泛函理论计算,高达200GPa。在高p-T XRD图案中的漫射散射信号的发生用作初级标准,以确定在LH DAC中达到约100GPa的体为立方(BCC)钒的熔化曲线。使用Quasispectral高温计的震动钒热辐射光谱的分析将熔融曲线约为〜246GPa和〜5830 k,这与我们使用SIMON方程的静态结果一致。对钒熔化曲线的目前静态和动态实验与我们的AIMD模拟与两相熔化建模一致,并且总体与使用Z方法的其他理论模拟一致。结果协调最近报告的理论差异,并反驳了自我一致的AB Initio格动力学计算给出的更高熔化的曲线报告。我们的研究中的一致性表明,一种不必将过热作为假设,以描述钒的固体液体平衡边界作为静态VS动态实验结果的解释。我们具有熔融和两阶段AIMD模拟的原位诊断的静态和动态结果具有在极端P-T条件下研究其他D-轨道过渡金属及其合金的熔化曲线。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第21期|214104.1-214104.12|共12页
  • 作者单位

    Institute of Atomic and Molecular Physics Sichuan University Chengdu 610065 China;

    National Key Laboratory for Shock Wave and Detonation Physics Institute of Fluid Physics CAEP Mianyang 621900 China;

    National Key Laboratory for Shock Wave and Detonation Physics Institute of Fluid Physics CAEP Mianyang 621900 China;

    Department of Physics University of Illinois at Chicago Chicago Illinois 60607 USA;

    National Key Laboratory for Shock Wave and Detonation Physics Institute of Fluid Physics CAEP Mianyang 621900 China;

    National Key Laboratory for Shock Wave and Detonation Physics Institute of Fluid Physics CAEP Mianyang 621900 China;

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

    Institute of Atomic and Molecular Physics Sichuan University Chengdu 610065 China;

    Center for Advanced Radiation Sources University of Chicago Chicago Illinois 60637 USA Applied Physics Department Soreq Nuclear Research Center (NRC) Yavne 81800 Israel;

    Center for Advanced Radiation Sources University of Chicago Chicago Illinois 60637 USA;

    Department of Geological Sciences Jackson School of Geosciences The University of Texas at Austin Austin Texas 78712 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号