...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Anisotropic superconductivity and quantum oscillations in the layered dichalcogenide TnSnS_2
【24h】

Anisotropic superconductivity and quantum oscillations in the layered dichalcogenide TnSnS_2

机译:层状二甲基化物TNSNS_2中的各向异性超导和量子振荡

获取原文
获取原文并翻译 | 示例
           

摘要

TaSnS_2 single crystal and polycrystalline samples are investigated in detail by magnetization, electrical resistivity, and specific heat as well as Raman spectroscopy and nuclear magnetic resonance (NMR). Studies are focused on the temperature and magnetic field dependence of the superconducting state. We determine the critical fields for both directions B ‖c and B⊥c. Additionally, we investigate the dependence of the resistivity, the critical temperature, and the structure through Raman speelroscopy under high pressure up to 10 GPa. At a pressure of ≈3 GPa the superconductivity is suppressed below our minimum temperature. The Sn NMR powder spectrum shows a single line which is expected for the TaSnS_2 phase and confirms the high sample quality. Pronounced de Haas-van Alphen oscillations in the ac susceptibility of polycrystalline sample reveal two pairs of frequencies indicating coexisting small and large Fermi surfaces. The effective mass of the smaller Fermi surface is ≈0.5m_e. We compare these results with the band structures from DFT calculations. Our findings on TaSnS_2 are discussed in terms of a quasi-two-dimensional BCS superconductivity.
机译:通过磁化,电阻率和比热以及拉曼光谱和核磁共振(NMR)详细研究Tasns_2单晶和多晶样品。研究专注于超导状态的温度和磁场依赖性。我们确定两个方向B‖C和B⊥C的关键字段。此外,我们通过高压高达10GPa的拉曼Speelcopce来研究电阻率,临界温度和结构的依赖性。在≈3GPa的压力下,超导率低于我们的最低温度。 SN NMR粉末光谱显示了一种预期TASNS_2相的单线,并确认高样品质量。 De Haas-Van Alphe振荡在多晶样品的AC易感性中显示两对频率,指示共存小型和大型费米表面。较小的费米表面的有效质量为≈0.5mm_e。我们将这些结果与来自DFT计算的频带结构进行比较。我们在TASNS_2上的发现是根据准二维BCS超导性讨论的。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第21期|214501.1-214501.10|共10页
  • 作者单位

    Institut fuer Experimentelle Physik TU Bergakademie Freiberg Leipziger Strasse 23 09596 Freiberg Germany Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany Fachbereich Physik Freie Universitaet Berlin Arnimallee 14 14195 Berlin Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Institut fuer Experimentelle Physik TU Bergakademie Freiberg Leipziger Strasse 23 09596 Freiberg Germany;

    Institut fuer Experimentelle Physik TU Bergakademie Freiberg Leipziger Strasse 23 09596 Freiberg Germany;

    Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

    Institut fuer Theoretische Physik TU Bergakademie Freiberg Leipziger Strasse 23 09596 Freiberg Germany;

    Institut fuer Experimentelle Physik TU Bergakademie Freiberg Leipziger Strasse 23 09596 Freiberg Germany Max-Planck-Institut fuer Chemische Physik fester Stnffe Noethnitzer Strasse 40 01187 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号