首页> 外文期刊>IEEE Transactions on Plasma Science >Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1-10 TW
【24h】

Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1-10 TW

机译:真空清洁技术对1-10 TW处提取B型离子二极管上LiF场阈离子源性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Uncontrolled plasma formation on electrode surfaces limits performance in a wide variety of pulsed power devices such as electron and ion diodes, transmission lines, radio frequency (RF) cavities, and microwave devices. Surface and bulk contaminants on the electrodes in vacuum dominate the composition of these plasmas, formed through processes such as stimulated and thermal desorption followed by ionization. We are applying RF discharge cleaning, anode heating, cathode cooling, and substrate surface coatings to the control of the effects of these plasmas in the particular case of applied-B ion diodes on the SABRE (1 TW) and PBFA-X (30 TW) accelerators. Evidence shows that our LiF ion source provides a 200-700 A/cm/sup 2/ lithium beam for 10-20 ns which is then replaced by a contaminant beam of protons and carbon. Other ion sources show similar behavior. Our electrode surface and substrate cleaning techniques reduce beam contamination, anode and cathode plasma formation, delay impedance collapse, and increase lithium energy, power, and production efficiency. Theoretical and simulation models of electron-stimulated and thermal-contaminant desorption leading to anode plasma formation show agreement with many features from experiment. Decrease of the diode electron loss by changing the shape and magnitude of the insulating magnetic field profiles increases the lithium output and changes the diode response to cleaning. We also show that the LiF films are permeable, allowing substrate contaminants to affect diode behavior. Substrate coatings of Ta and Au underneath the LiF film allow some measure of control of substrate contaminants, and provide direct evidence for thermal desorption. We have increased lithium current density by a factor of four and lithium energy by a factor of five through a combination of in situ surface and substrate cleaning, substrate coatings, and field profile modifications.
机译:电极表面上不受控制的等离子体形成限制了各种脉冲功率设备的性能,例如电子和离子二极管,传输线,射频(RF)腔和微波设备。真空中电极上的表面和主体污染物占主导地位,这些等离子体的组成是通过诸如受激和热解吸然后电离的过程形成的。我们正在应用射频放电清洁,阳极加热,阴极冷却和基板表面涂层来控制这些等离子体的影响,在SABER(1 TW)和PBFA-X(30 TW)上应用B离子二极管的情况下)加速器。有证据表明,我们的LiF离子源可提供200-700 A / cm / sup 2 /的锂离子束,持续10-20 ns,然后被质子和碳的污染束代替。其他离子源表现出相似的行为。我们的电极表面和基材清洁技术可减少束污染,阳极和阴极等离子体的形成,延迟阻抗崩溃并增加锂能量,功率和生产效率。电子刺激和热污染物解吸导致阳极等离子体形成的理论和仿真模型表明与实验中的许多特征相吻合。通过改变绝缘磁场轮廓的形状和大小来减少二极管电子损耗,可以增加锂输出,并改变二极管对清洁的响应。我们还表明,LiF膜是可渗透的,从而使基底污染物影响二极管的行为。 LiF膜下面的Ta和Au基底涂层可以对基底污染物进行某种程度的控制,并提供热脱附的直接证据。通过原位表面和基板清洁,基板涂层和场分布修改的组合,我们将锂电流密度提高了四倍,锂能量提高了五倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号