...
首页> 外文期刊>Powder diffraction >Understanding stress gradients in microelectronic metallization
【24h】

Understanding stress gradients in microelectronic metallization

机译:了解微电子金属化中的应力梯度

获取原文
获取原文并翻译 | 示例
           

摘要

The manufacture of ultra-large scale integration technology can impose significant strain within the constituent metallization because of the mismatch in coefficients of thermal expansion between metallization and its surrounding environment. The resulting stress distributions can be large enough to induce voiding within Cu-based metallization, a key reliability issue that must be addressed. The interface between the Cu and overlying capping layers is a critical location associated with void formation. By combining conventional and glancing-incidence X-ray diffraction, depth-dependent stress distributions that develop in Cu films and patterned features are investigated. In situ annealing and as-deposited measurements reveal that strain gradients are created in capped Cu structures, where an increased in-plane tensile stress is generated near the Cu/cap interface. The interplay between plasticity in Cu and the constraint imposed by capping layers dictates the extent of the observed gradients. Cu films possessing caps deposited at temperatures where Cu experienced only elastic deformation did not exhibit depth-dependent stress distributions. However, all capped Cu samples exposed to temperatures that induce plastic behavior developed greater tensile stress at the Cu/cap interface than in the bulk Cu film after cooling, representing a clear concern for the mitigation of metallization voiding.
机译:由于金属化及其周围环境之间的热膨胀系数不匹配,因此超大规模集成技术的制造会在成分金属化中施加很大的应变。所产生的应力分布可能足够大,以在基于铜的金属化中引起空洞,这是必须解决的关键可靠性问题。 Cu和覆盖层之间的界面是与空隙形成相关的关键位置。通过结合常规X射线和掠射X射线衍射,研究了在铜膜中形成的深度相关应力分布和图案化特征。原位退火和沉积测量结果表明,在加盖的铜结构中产生了应变梯度,其中在铜/盖界面附近产生了增加的面内拉伸应力。 Cu的可塑性与覆盖层施加的约束之间的相互作用决定了观察到的梯度的程度。具有在仅Cu经历弹性变形的温度下沉积的帽的Cu膜没有显示出深度依赖性的应力分布。但是,在冷却后,暴露于可塑性行为的所有加盖的铜样品在铜/盖界面处的拉伸应力要大于块状铜膜中的拉伸应力,这明显减轻了金属化空洞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号