...
首页> 外文期刊>精密工学会誌 >単結晶SiC基板の高能率鏡面仕上げ技術に関する研究: 定圧研削および紫外光支援研磨による鏡面仕上げ加工
【24h】

単結晶SiC基板の高能率鏡面仕上げ技術に関する研究: 定圧研削および紫外光支援研磨による鏡面仕上げ加工

机译:单晶SiC基板高效镜面加工技术研究:恒压磨镜和UV辅助抛光镜面加工

获取原文
获取原文并翻译 | 示例
           

摘要

シリコンカーバイド(SiC)は,耐熱性や耐食性に優れており,さらに化学的,電気的にも優れた特性を有していることから,電気エネルギーの高効率利用を可能とする次世代半導体デバイスや次世代照明である発光デバイスへの応用が期待されている.%SiC is a promising next-generation semiconductor material for high-temperature, high-frequency and high-power device applications due to its excellent properties, such as good thermal conductivity, good carrier mobility and high chemical stability. In device fabrication, atomically smooth and damage-free SiC substrates are highly required for producing high-quality epitaxial films and gate-oxide interfaces. However, such SiC substrates are relatively difficult to machine because of its mechanical hardness and marked chemical inertness. We have proposed and developed an ultra-precision polishing method for single crystal SiC substrates utilizing an ultraviolet (UV) irradiation. This paper describes the planarization method of SiC substrate by constant-pressure grinding and ultraviolet irradiation assisted polishing. The surface qualities were measured and evaluated using phase-shift interferometric microscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The obtained results show that the many asperities on the preprocessed surface could be completely removed and the surface roughness was markedly improved by constant-pressure grinding and ultraviolet irradiation assisted polishing. The microroughness of the processed surface was improved and realized to be 0.12 nm (Ra) and 1.55 nm (Rz), respectively.
机译:碳化硅(SiC)具有出色的耐热性和耐腐蚀性,并且还具有出色的化学和电气特性,因此可用于可高效利用电能的下一代半导体器件。期望将其应用于下一代照明的发光装置。 %SiC具有优异的性能,例如良好的导热性,良好的载流子迁移率和高化学稳定性,是一种适用于高温,高频和大功率器件的有希望的下一代半导体材料。为了生产高质量的外延膜和栅氧化物界面,无损SiC衬底是非常必要的,但是由于其机械硬度和明显的化学惰性,这种SiC衬底很难加工。紫外(UV)辐射的单晶SiC衬底的精密抛光方法。本文介绍了通过恒压研磨和紫外辐射辅助抛光对SiC衬底进行平面化的方法。使用相移干涉显微镜对表面质量进行了测量和评估,原子力显微镜(AFM)和X射线光电子能谱(XPS)。获得的结果表明,通过恒压磨削和紫外线照射辅助抛光可以完全去除预处理表面上的许多凹凸,并显着改善表面粗糙度。加工后表面的微粗糙度得以改善,实现为0.12 nm(Ra )和1.55 nm(Rz)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号