...
首页> 外文期刊>Proceedings of the institution of mechanical engineers >Finite element simulation for tensile and impact test of activated TIG welding of AISI 321 austenitic stainless steel
【24h】

Finite element simulation for tensile and impact test of activated TIG welding of AISI 321 austenitic stainless steel

机译:AISI 321奥氏体不锈钢活性TIG焊接拉伸和冲击试验的有限元模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Tungsten inert gas (TIG) welding process have been widely accepted in industries using stainless steel, titanium alloys and other 21st century metals to achieve high-quality weldments. TIG welding is mostly used to join workpieces with a thickness of less than 6 mm. To overcome this limitation of TIG welding, activated TIG welding (A-TIG) was employed to achieve high penetration depth in a single pass using activated flux. This article presents a study of experimental and finite element (FE) analysis on the mechanical behaviour of AISI 321 plate samples (base metal and weld metal) by performing a uniaxial tensile and Charpy impact test. The uniaxial tensile test is carried out for the base metal (BM) and A-TIG weld metal (WM) with a loading rate of 1 mm/min at room temperature. In the current FE analysis, the temperature and strain-rate dependent Johnson-Cook (J-C) model was utilised. The results of stress-strain values and impact energy predicted by the FE analysis agree with experimental results. Also, the fracture behaviour of the experimental and FE simulations were identical to ductile mode of fracture. In the FE analysis, the neck and fracture locations of the BM and WM specimens were very similar to the experiment. It is evident that the JC model results of uniaxial tensile test have a prediction error of 0.51% and 0.48% for BM and WM respectively. Also, similar accuracy with a prediction error of 2.21% and 3.19% for BM and WM Charpy test specimen, respectively. Scanning electron microscope results show that the failure of the BM and WM is initiated by ductile nature of the fused material at the joint.
机译:钨极惰性气体保护(TIG)焊接工艺已在使用不锈钢,钛合金和其他21世纪金属的行业中被广泛接受,以实现高质量的焊接件。 TIG焊接主要用于连接厚度小于6毫米的工件。为了克服TIG焊接的这一局限性,采用了活化的TIG焊接(A-TIG),使用活化的助焊剂在单道焊道中获得高熔深。本文通过执行单轴拉伸和夏比冲击试验,对AISI 321板样品(基础金属和焊接金属)的力学行为进行了实验和有限元(FE)分析的研究。在室温下以1 mm / min的加载速率对母材(BM)和A-TIG焊接金属(WM)进行单轴拉伸测试。在当前的有限元分析中,利用了温度和应变率相关的Johnson-Cook(J-C)模型。有限元分析预测的应力-应变值和冲击能结果与实验结果吻合。同样,实验和有限元模拟的断裂行为与延性断裂模式相同。在有限元分析中,BM和WM标本的颈部和骨折部位与实验非常相似。显然,单轴拉伸试验的JC模型结果对BM和WM的预测误差分别为0.51%和0.48%。同样,BM和WM夏比试样的预测准确度相似,分别为2.21%和3.19%。扫描电子显微镜结果表明,BM和WM的破坏是由熔合材料在接头处的延性引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号