首页> 外文期刊>Proceedings of the institution of mechanical engineers >The use of neural networks and nonlinear finite element models to simulate the temperature-dependent stress response of thermoplastic elastomers
【24h】

The use of neural networks and nonlinear finite element models to simulate the temperature-dependent stress response of thermoplastic elastomers

机译:使用神经网络和非线性有限元模型来模拟热塑性弹性体的温度相关应力响应

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a methodology that combines artificial neural networks and nonlinear hyperelastic finite element modeling to simulate the temperature-dependent stress response of elastomer solids is presented. The methodology is verified by a discrete model of a tensile test specimen, which is used to generate stress-strain pairs of existent experimental data. The proposed method is also tested with a benchmark problem of a rubber-like cylinder under compression. Three grades of an elastomer used for diverse engineering applications are used throughout the study. On this basis, three neural network architecture with 10 hidden neurons are implemented as constitutive models to reproduce the experimental data of the materials. The validation results show that the proposed methodology can reproduce tensile tests with an error of 5% of less than regarding experimental data for elastomers that present no yielding point. The benchmark problem results were at the range expected for the elastomer materials with no yielding, where it was possible to derive force temperature-dependent responses. These results suggest that the methodology helps the prediction of the material response when only material stress-strain curves at different temperatures exist. Therefore, the presented approach in this contribution helps to simulate the temperature-dependent stress responses of elastomeric solids with no defined yielding point.
机译:在这项研究中,提出了一种方法,该方法结合了人工神经网络和非线性超弹性有限元建模来模拟弹性体固体的温度相关应力响应。该方法通过拉伸试样的离散模型进行验证,该模型用于生成现有实验数据的应力-应变对。所提出的方法还通过压缩下的橡胶状圆柱体的基准问题进行了测试。在整个研究过程中,使用了用于各种工程应用的三种等级的弹性体。在此基础上,将三个具有10个隐藏神经元的神经网络体系结构作为本构模型,以重现材料的实验数据。验证结果表明,所提出的方法可以再现拉伸试验,其误差比关于没有屈服点的弹性体的实验数据要小5%。基准问题的结果在没有屈服的弹性体材料的预期范围内,在该范围内可以得出力的温度相关响应。这些结果表明,当仅存在不同温度下的材料应力-应变曲线时,该方法有助于预测材料响应。因此,本文提出的方法有助于模拟没有定义屈服点的弹性体固体的温度依赖性应力响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号