...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >SEQUENCE ANALYSIS OF A MANNITOL DEHYDROGENASE CDNA FROM PLANTS REVEALS A FUNCTION FOR THE PATHOGENESIS-RELATED PROTEIN ELI3
【24h】

SEQUENCE ANALYSIS OF A MANNITOL DEHYDROGENASE CDNA FROM PLANTS REVEALS A FUNCTION FOR THE PATHOGENESIS-RELATED PROTEIN ELI3

机译:植物中甘露醇脱氢酶CDNA的序列分析揭示了与病原相关的蛋白质ELI3的功能

获取原文
获取原文并翻译 | 示例
           

摘要

Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to result from intrinsic differences in the biosynthesis of hexitols vs. sugars, Celery also exhibits high salt tolerance due to the function of mannitol as an osmoprotectant. A mannitol catabolic enzyme that oxidizes mannitol to mannose (mannitol dehydrogenase, MTD) has been identified, In celery plants, MTD activity and tissue mannitol concentration are inversely related, MTD provides the initial step by which translocated mannitol is committed to central metabolism and, by regulating mannitol pool size, is important in regulating salt tolerance at the cellular level, We have now isolated, sequenced, and characterized a Mtd cDNA from celery, Analyses showed that Mtd RNA was more abundant in cells grown on mannitol and less abundant in salt-stressed cells, A protein database search revealed that the previously described ELI3 pathogenesis-related proteins from parsley and Arabidopsis are MTDs, Treatment of celery cells with salicylic acid resulted in increased MTD activity and RNA, Increased MTD activity results in an increased ability to utilize mannitol, Among other effects, this may provide an additional source of carbon and energy for response to pathogen attack. These responses of the primary enzyme controlling mannitol pool size reflect the importance of mannitol metabolism in plant responses to divergent types of environmental stress. [References: 31]
机译:甘露醇是自然界中最丰富的糖醇,存在于细菌,真菌,地衣和许多维管植物物种中。芹菜(Apium graveolens L.)是一种以光合作用方式形成甘露醇的植物,具有较高的光合作用速率,这被认为是由于己糖与糖的生物合成内在差异而引起的。由于甘露醇具有渗透保护作用,芹菜还具有较高的耐盐性。已经确定了将甘露醇氧化为甘露糖的甘露醇分解代谢酶(甘露醇脱氢酶,MTD)。在芹菜植物中,MTD活性和组织甘露醇浓度成反比关系,MTD提供了第一步,使易位甘露醇参与中央代谢,并且调节甘露醇库的大小,在调节细胞水平的耐盐性中很重要。我们现已从芹菜中分离,测序并鉴定了Mtd cDNA,分析表明,在甘露醇上生长的细胞Mtd RNA含量较高,而在盐-蛋白质数据库搜索显示,先前描述的来自欧芹和拟南芥的ELI3致病相关蛋白是MTD,用水杨酸处理芹菜细胞导致MTD活性和RNA增加,MTD活性增加导致利用甘露醇的能力增强,这可能会为应对病情提供额外的碳和能量来源n攻击。控制甘露醇库大小的主要酶的这些反应反映了甘露醇代谢在植物对不同类型环境胁迫的反应中的重要性。 [参考:31]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号