...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO_2
【24h】

Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO_2

机译:CO 2上升下亚热带植被最大叶导率的优化导致气候强迫

获取原文
获取原文并翻译 | 示例
           

摘要

Plant physiological adaptation to the global rise in atmospheric CO_2 concentration (CO_2) is identified as a crucial climatic forcing. To optimize functioning under rising CO_2, plants reduce the diffusive stomatal conductance of their leaves (g_s) dynamically by closing stomata and structurally by growing leaves with altered stomatal densities and pore sizes. The structural adaptations reduce maximal stomatal conductance (g_(smax)) and constrain the dynamic responses of g_s. Here, we develop and validate models that simulate structural stomatal adaptations based on diffusion of CO_2 and water vapor through stomata, photosynthesis, and optimization of carbon gain under the constraint of a plant physiological cost of water loss. We propose that the ongoing optimization of g_(smax) is eventually limited by species-specific limits to phenotypic plasticity. Our model reproduces observed structural stomatal adaptations and predicts that adaptation will continue beyond double CO_2. Owing to their distinct stomatal dimensions, angio-sperms reach their phenotypic response limits on average at 740 ppm and conifers on average at 1,250 ppm CO_2. Further, our simulations predict that doubling today's CO_2 will decrease the annual transpiration flux of subtropical vegetation in Florida by ≈60 W·m~(-2). We conclude that plant adaptation to rising CO_2 is altering the freshwater cycle and climate and will continue to do so throughout this century.
机译:植物生理适应大气CO_2浓度(CO_2)的全球上升被认为是至关重要的气候强迫。为了优化在CO_2升高下的功能,植物通过关闭气孔来动态降低其叶片的扩散气孔导度(g_s),并通过气孔密度和孔径改变的叶片生长来结构上降低其气孔导度。结构的适应性降低最大气孔导度(g_(smax))并限制g_s的动态响应。在这里,我们开发并验证了模拟模型的气孔结构适应模型,该模型基于在气孔失水的植物生理成本的约束下,CO_2和水蒸气通过气孔的扩散,光合作用和优化碳的吸收。我们建议正在进行的g_(smax)的优化最终受特定于表型可塑性的限制。我们的模型再现了观察到的结构气孔适应性,并预测适应性将继续超过两倍的CO_2。由于其不同的气孔尺寸,被子植物的表型响应极限平均为740 ppm,针叶树平均为1,250 ppm CO_2。此外,我们的模拟预测,今天的CO_2倍增将使佛罗里达亚热带植被的年蒸腾通量减少≈60W·m〜(-2)。我们得出的结论是,植物对不断上升的CO_2的适应作用正在改变淡水循环和气候,并将在整个本世纪继续如此。

著录项

  • 来源
  • 作者单位

    Environtnental Sciences, Copernicus Institute for Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands;

    Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands;

    Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands;

    Department of Biology, Indiana University, Bloomington, IN 47405;

    Environtnental Sciences, Copernicus Institute for Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands;

    Environtnental Sciences, Copernicus Institute for Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    climate change; physiological forcing; plant evolution;

    机译:气候变化;生理强迫;植物进化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号