...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Systematic variation in the temperature dependence of physiological and ecological traits
【24h】

Systematic variation in the temperature dependence of physiological and ecological traits

机译:生理和生态特征对温度的系统性变化

获取原文
获取原文并翻译 | 示例
           

摘要

To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecif ic) responses reveals that 87% are fit well by the Boltzmann-Arrhenius model. The mean activation energy for these rises is 0.66 ± 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to pred-• ators, suggesting a thermal version of the life-dinner principle-stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 ± 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change.
机译:为了了解温度对生物系统的影响,我们编译,组织和分析了有关微生物,植物和动物的1,072个热响应的数据库。我们数据库中前所未有的特征(n = 112),物种(n = 309),体型(15个数量级)和栖息地(所有主要生物群落)的多样性使我们能够量化生物特征温度响应的新特征。特别是,对种内(种内)响应的上升成分的分析表明,波尔兹曼-阿伦尼乌斯模型非常适合87%。这些上升的平均活化能为0.66±0.05 eV,与报道的跨物种(种间)值0.65 eV相似。但是,上升活化能分布的系统变化是明显的,包括以前无法识别的右偏度,中值约为0.55 eV。这种偏斜存在于组织,分类群,营养群和栖息地的各个层面,部分原因是相对于捕食者,猎物在较低温度下具有较高的性状表现,这表明生活-晚餐原则的热力版本-选择更强比为晚餐而奔波对于单峰响应,栖息地(海洋,淡水和陆地)在很大程度上解释了平均温度,在该温度下特征值是最佳的,但在平均温度附近没有变化。性状下降的活化能分布的平均值为1.15±0.39 eV(显着高于上升),并且也是右偏的。我们的研究结果突出了生物特征热响应的一般性和偏差,并有助于提供一个基础,以更好地预测从细胞到群落的生物系统如何响应温度变化。

著录项

  • 来源
  • 作者单位

    Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90024,School of Marine and Tropical Biology,James Cook University, Townsville, QLD 4811, Australia;

    Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90024;

    Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90024,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095,Santa Fe Institute, Santa Fe, NM 87501;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号