...
【24h】

Predicting human blood viscosity in silico

机译:预测人体血液粘度

获取原文
获取原文并翻译 | 示例
           

摘要

The viscosity of blood has long been used as an indicator in the understanding and treatment of disease, and the advent of modern viscometers allows its measurement with ever-improving clinical convenience. However, these advances have not been matched by theoretical developments that can yield a quantitative understanding of blood's microrheology and its possible connection to relevant biomolecules (e.g., fibrinogen). Using coarse-grained molecular dynamics and two different red blood cell models, we accurately predict the dependence of blood viscosity on shear rate and hematocrit. We explicitly represent cell-cell interactions and identify the types and sizes of reversible rouleaux structures that yield a tremendous increase of blood viscosity at low shear rates. We also present the first quantitative estimates of the magnitude of adhesive forces between red cells. In addition, our simulations support the hypothesis, previously deduced from experiments, of yield stress as an indicator of cell aggregation. This non-Newtonian behavior is analyzed and related to the suspension's microstruc-ture, deformation, and dynamics of single red blood cells. The most complex cell dynamics occurs in the intermediate shear rate regime, where individual cells experience severe deformation and transient folded conformations. The generality of these cell models together with single-cell measurements points to the future prediction of blood-viscosity anomalies and the corresponding microstructures associated with various diseases (e.g., malaria, AIDS, and diabetes mellitus). The models can easily be adapted to tune the properties of a much wider class of complex fluids including capsule and vesicle suspensions.
机译:长期以来,血液的粘度一直被用作了解和治疗疾病的指标,现代粘度计的出现使它的测量具有不断提高的临床便利性。但是,这些进展还没有与理论上的发展相提并论,这些理论上的发展可以对血液的微流变学及其与相关生物分子(例如纤维蛋白原)的可能联系提供定量的了解。使用粗粒度的分子动力学和两种不同的红细胞模型,我们可以准确地预测血液粘度对剪切速率和血细胞比容的依赖性。我们明确表示细胞间的相互作用,并确定可逆的rouleaux结构的类型和大小,这些结构在低剪切速率下会导致血液粘度急剧增加。我们还提出了红细胞之间粘附力大小的第一个定量估计。另外,我们的模拟支持先前从实验推论的假设,即屈服应力可作为细胞聚集的指标。分析了这种非牛顿行为,并将其与悬浮液的微结构,变形和单个红细胞的动力学相关。最复杂的细胞动力学发生在中等剪切速率范围内,其中单个细胞经历严重的变形和短暂的折叠构象。这些细胞模型的普遍性以及单细胞测量结果表明,对血液粘度异常以及与各种疾病(例如疟疾,艾滋病和糖尿病)相关的相应微结构的未来预测。可以轻松地对模型进行调整,以调整包括胶囊和囊泡悬浮液在内的多种复杂流体的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号