...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Supramolecular design of self-assembling nanofibers for cartilage regeneration
【24h】

Supramolecular design of self-assembling nanofibers for cartilage regeneration

机译:用于软骨再生的自组装纳米纤维的超分子设计

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular and supramolecular design of bioactive biomaterials could have a significant impact on regenerative medicine. Ideal regenerative therapies should be minimally invasive, and thus the notion of self-assembling biomaterials programmed to transform from injectable liquids to solid bioactive structures in tissue is highly attractive for clinical translation. We report here on a coas-sembly system of peptide amphiphile (PA) molecules designed to form nanofibers for cartilage regeneration by displaying a high density of binding epitopes to transforming growth factor β-1 (TGFβ-1). Growth factor release studies showed that passive release of TGFβ-1 was slower from PA gels containing the growth factor binding sites. In vitro experiments indicate these materials support the survival and promote the chondrogenic differentiation of human mesenchymal stem cells. We also show that these materials can promote regeneration of articular cartilage in a full thickness chondral defect treated with microfracture in a rabbit model with or even without the addition of exogenous growth factor. These results demonstrate the potential of a completely synthetic bioactive biomaterial as a therapy to promote cartilage regeneration.
机译:生物活性生物材料的分子和超分子设计可能会对再生医学产生重大影响。理想的再生疗法应该是微创的,因此,自组装生物材料的概念被编程为从组织中的可注射液体转变为固体生物活性结构,对临床翻译非常有吸引力。我们在这里报告了一个肽两亲性(PA)分子的共组装系统,该系统旨在通过显示高密度的表位转化生长因子β-1(TGFβ-1)形成用于软骨再生的纳米纤维。生长因子释放研究表明,从含有生长因子结合位点的PA凝胶中,TGFβ-1的被动释放较慢。体外实验表明这些物质支持人间充质干细胞的存活并促进其软骨分化。我们还显示,这些材料可以在兔模型中添加或什至不添加外源性生长因子的情况下,通过微骨折治疗的全厚度软骨缺损处促进关节软骨的再生。这些结果证明了完全合成的生物活性生物材料作为促进软骨再生的疗法的潜力。

著录项

  • 来源
  • 作者单位

    Institute for BioNanotechnology in Medicine, Northwestern University, 303 E. Superior Street 11th floor, Chicago, IL 60611 Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208;

    Department of Orthopaedic Surgery, Northwestern University,676 N. Saint Clair, Suite 1350, Chicago, IL 60611;

    Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208;

    Institute for BioNanotechnology in Medicine, Northwestern University, 303 E. Superior Street 11th floor, Chicago, IL 60611 Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208;

    Northwestern Orthopaedic Institute, 680 N. Lakeshore Dr., Suite 1028, Chicago, IL 60611;

    Institute for BioNanotechnology in Medicine, Northwestern University, 303 E. Superior Street 11th floor, Chicago, IL 60611 Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 Department of Chemistry, Northwestern University,2145 Sheridan Road, Evanston, IL 60208 Department of Medicine, Northwestern University, 251 East Huron Street, Suite 3-150, Chicago, IL 60611;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    self-assembling biomaterials; chondral defects; microfracture; peptide amphiphiles; transforming growth factor;

    机译:自组装生物材料;软骨缺损;微断裂肽两亲物转化生长因子;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号