...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Silane plus molecular hydrogen as a possible pathway to metallic hydrogen
【24h】

Silane plus molecular hydrogen as a possible pathway to metallic hydrogen

机译:硅烷和分子氢可能是通向金属氢的途径

获取原文
获取原文并翻译 | 示例
           

摘要

The high-pressure behavior of silane, SiH4, plus molecular hydrogen was investigated using a structural search method and ab initio molecular dynamics to predict the. structures and examine the physical origin of the pressure-induced drop in hydrogen intramolecular vibrational (vibron) frequencies. A structural distortion is predicted at 15 GPa from a slightly strained fCC cell to a rhombohe-dral cell that involves a small volume change. The predicted equation of state and the pressure-induced drop in the hydrogen vibron frequencies reproduces well the experimental data (Strobel TA, Somayazulu M, Hemley RJ (2009) Phys Rev Lett 103:065701). The bond weakening in H_2 is induced by intermolecular interactions between the H_2 and SiH_4 molecules. A significant feature of the high-pressure structures of SiH_4(H_2)_2 is the dynamical behavior of the H_2 molecules. It is found that H_2 molecules are rotating in this pressure range whereas the SiH_4 molecules remain rigid. The detailed nature of the interactions of molecular hydrogen with SiH_4 in SiH_4(H_2)_2 is therefore strongly influenced by the dynamical behavior of the H_2 molecules in the high-pressure structure. The phase with the calculated structure is predicted to become metallic near 120 GPa, which is significantly lower than the currently suggested pressure for metallization of bulk molecular hydrogen.
机译:使用结构搜索方法和从头算分子动力学来预测硅烷,SiH4和分子氢的高压行为。并检查氢分子内振动(振动子)频率中压力引起的下降的物理原因。从轻微应变的fCC细胞到涉及很小体积变化的菱形-dral细胞,预计在15 GPa时会发生结构变形。预测的状态方程式和氢振动子频率中的压力引起的下降很好地再现了实验数据(Strobel TA,Somayazulu M,Hemley RJ(2009)Phys Rev Lett 103:065701)。 H_2和SiH_4分子之间的分子间相互作用导致H_2中的键弱化。 SiH_4(H_2)_2的高压结构的显着特征是H_2分子的动力学行为。发现H_2分子在该压力范围内旋转,而SiH_4分子保持刚性。因此,高压结构中H_2分子的动力学行为强烈影响分子氢与SiH_4(H_2)_2中的SiH_4相互作用的详细性质。预计具有计算结构的相将在120 GPa附近变成金属,这大大低于目前建议的用于大分子氢金属化的压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号