...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Revising the nitrogen cycle in the Peruvian oxygen minimum zone
【24h】

Revising the nitrogen cycle in the Peruvian oxygen minimum zone

机译:修改秘鲁氧气最低限度区的氮循环

获取原文
获取原文并翻译 | 示例
           

摘要

The oxygen minimum zone (OMZ) of the Eastern Tropical South Pacific (ETSP) is 1 of the 3 major regions in the world where oceanic nitrogen is lost in the pelagic realm. The recent identification of anammox, instead of denitrification, as the likely prevalent pathway for nitrogen loss in this OMZ raises strong questions about our understanding of nitrogen cycling and organic matter remineral-ization in these waters. Without detectable denitrification, it is unclear how NH_4~+ is remineralized from organic matter and sustains anammox or how secondary NO_2~- maxima arise within the OMZ. Here we show that in the ETSP-OMZ, anammox obtains 67% or more of NO_2~- from nitrate reduction, and 33% or less from aerobic ammonia oxidation, based on stable-isotope pairing experiments corroborated by functional gene expression analyses. Dissimila-tory nitrate reduction to ammonium was detected in an open-ocean setting. It occurred throughout the OMZ and could satisfy a substantial part of the NH_4~+ requirement for anammox. The remaining NH4 came from remineralization via nitrate reduction and probably from microaerobic respiration. Altogether, deep-sea NO_3~-accounted for only ≈50% of the nitrogen loss in the ETSP, rather than 100% as commonly assumed. Because oceanic OMZs seem to be expanding because of global climate change, it is increasingly imperative to incorporate the correct nitrogen-loss pathways in global biogeochemical models to predict more accurately how the nitrogen cycle in our future ocean may respond.
机译:东部热带南太平洋(ETSP)的最小氧气区(OMZ)是世界上三个海洋区域中流失了海洋氮的主要区域之一。最近将厌氧氨氧化而不是反硝化确定为该OMZ中可能的氮流失途径,这引起了人们对我们对这些水中氮循环和有机物再​​矿化的理解的强烈质疑。没有可检测到的反硝化作用,尚不清楚NH_4〜+如何从有机物中重新矿化并维持厌氧氨氧化状态,或在OMZ中如何产生次级NO_2〜-最大值。在此,根据功能基因表达分析证实的稳定同位素配对实验,我们发现在ETSP-OMZ中,厌氧氨从硝酸盐还原中获得67%或以上的NO_2〜-,从需氧氨氧化中获得33%或以下的氮。在开阔的海洋环境中检测到硝酸盐还原为铵的异化。它发生在整个OMZ区域,并且可以满足NH_4〜+对厌氧氨氧化的大部分要求。剩余的NH4来自通过减少硝酸盐而重新矿化,也可能来自微氧呼吸。总体而言,深海NO_3〜仅占ETSP中氮损失的约50%,而不是通常认为的100%。由于海洋OMZ似乎由于全球气候变化而在扩大,因此越来越有必要在全球生物地球化学模型中纳入正确的氮损失途径,以更准确地预测我们未来海洋中的氮循环如何响应。

著录项

  • 来源
  • 作者单位

    Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany;

    Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany;

    Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;

    Department of Microbiology, IWWR, Radboud University Nijmegen, 6500 HC Nijmegen, The Netherlands;

    Department of Microbiology, IWWR, Radboud University Nijmegen, 6500 HC Nijmegen, The Netherlands Department for Microbial Ecology, University of Vienna, Austria;

    Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany Civil and Environmental Engineering Department, Stanford University, Stanford, CA;

    Direccion de Investigaciones Oceanograficas, Instituto del Mar del Peru, Esquina Gamarra y General Valle S/N, Chucuito, Callao 22, Peru;

    Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany;

    Department of Microbiology, IWWR, Radboud University Nijmegen, 6500 HC Nijmegen, The Netherlands;

    Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anammox; dissimilatory nitrate reduction to ammonium; nitrogen loss; functional gene expression; remineralization;

    机译:厌氧菌硝酸盐异化还原为铵;氮损失功能基因表达再矿化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号