...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Rim1α Phosphorylation At Serine-413 By Protein Kinase A Is Not Required For Presynaptic Long-term Plasticity Or Learning
【24h】

Rim1α Phosphorylation At Serine-413 By Protein Kinase A Is Not Required For Presynaptic Long-term Plasticity Or Learning

机译:突触前长期可塑性或学习不需要蛋白激酶A在丝氨酸413处的Rim1α磷酸化

获取原文
获取原文并翻译 | 示例
           

摘要

Activation of presynaptic cAMP-dependent protein kinase A (PKA) triggers presynaptic long-term plasticity in synapses such as cere-bellar parallel fiber and hippocampal mossy fiber synapses. RIM1α, a large multidomain protein that forms a scaffold at the presynaptic active zone, is essential for presynaptic long-term plasticity in these synapses and is phosphorylated by PKA at serine-413. Previous studies suggested that phosphorylation of RIM1α at serine-413 is required for presynaptic long-term potentiation in parallel fiber synapses formed in vitro by cultured cerebellar neurons and that this type of presynaptic long-term potentiation is mediated by binding of 14-3-3 proteins to phosphorylated serine-413. To test the role of serine-413 phosphorylation in vivo, we have now produced knockin mice in which serine-413 is mutated to alanine. Surprisingly, we find that in these mutant mice, three different forms of presynaptic PKA-dependent long-term plasticity are normal. Furthermore, we observed that in contrast to RIM1α KO mice, RIM1 knockin mice containing the serine-413 substitution exhibit normal learning capabilities. The lack of an effect of the serine-413 mutation of RIM1α is not due to compensation by RIM2α because mice carrying both the serine-413 substitution and a RIM2α deletion still exhibited normal long-term presynaptic plasticity. Thus, phosphorylation of serine-413 of RIM1α is not essential for PKA-dependent long-term presynaptic plasticity in vivo, suggesting that PKA operates by a different mechanism despite the dependence of long-term presynaptic plasticity on RIM1α.
机译:突触前依赖cAMP的蛋白激酶A(PKA)的激活会触发突触前长期可塑性,例如小脑-平行纤维突触和海马苔藓纤维突触。 RIM1α是在突触前活性区形成支架的大型多结构域蛋白,对于这些突触中的突触前长期可塑性是必不可少的,并由PKA丝氨酸413磷酸化。先前的研究表明,在培养的小脑神经元体外形成的平行纤维突触中,突触前的长期增强需要在丝氨酸413处使RIM1α磷酸化,而这种突触前的长期增强是由14-3-3的结合介导的蛋白磷酸化丝氨酸413。为了测试体内丝氨酸413磷酸化的作用,我们现在生产了其中丝氨酸413突变为丙氨酸的敲入小鼠。令人惊讶地,我们发现在这些突变小鼠中,三种不同形式的突触前依赖PKA的长期可塑性是正常的。此外,我们观察到,与RIM1αKO小鼠相比,含有丝氨酸413取代的RIM1敲入小鼠表现出正常的学习能力。 RIM1α的丝氨酸413突变的影响的缺乏不是由于RIM2α的补偿,因为携带丝氨酸413取代和RIM2α缺失的小鼠仍表现出正常的长期突触前可塑性。因此,RIM1α的丝氨酸413的磷酸化对于体内PKA依赖性的长期突触前可塑性不是必需的,这表明尽管长期的突触前可塑性对RIM1α有依赖性,但PKA的作用机制却不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号