...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia
【24h】

Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia

机译:Wnt3a梯度通过上皮的拓扑排列将径向羽毛对称转化为双侧羽毛对称

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of bilaterally symmetric feathers is a fundamental process leading toward flight. One major unsolved mystery is how the feathers of a single bird can form radially symmetric downy feathers and bilaterally symmetric flight feathers. In developing downy feather follicles, barb ridges are organized parallel to the long axis of the feather follicle. In developing flight-feather follicles, the barb ridges are organized helically toward the anterior region, leading to the fusion and creation of a rachis. Here we discover an anterior-posterior molecular gradient of wingless int (Wnt3)a in flight but not downy feathers. Global inhibition of the Wnt gradient transforms bilaterally symmetric feathers into radially symmetric feathers. Production of an ectopic local Wnt3a gradient reoriented barb ridges toward the source and created an ectopic rachis. We further show that the orientation of the Wnt3a gradient is dictated by the dermal papilla (DP). Swapping DPs between wing covert and breast downy feathers demonstrates that both feather symmetry and molecular gradients are in accord with the origin of the DP. Thus the fates of feather epidermal cells are not predetermined through some molecular codes but can be modulated. Together, our data suggest feathers are shaped by a DP→Wnt gradient→helical barb ridge organization→ creation of rachis→bilateral symmetry sequence. We speculate diverse feather forms can be achieved by adjusting the orientation and slope of molecular gradients, which then shape the topological arrangements of feather epithelia, thus linking molecular activities to organ forms and novel functions.
机译:两侧对称羽毛的演变是导致飞行的基本过程。一个主要的未解之谜是一只鸟的羽毛如何形成径向对称的羽绒羽毛和两侧对称的飞行羽毛。在发育柔软的羽毛毛囊中,倒钩脊平行于羽毛毛囊的长轴排列。在形成飞行羽毛的卵泡时,倒钩的脊部呈螺旋形地朝向前部区域排列,从而导致融合并形成了棘突。在这里,我们发现了飞行中的无翼int(Wnt3)a而不是柔软的羽毛的前后分子梯度。 Wnt梯度的全局抑制将双向对称的羽毛转换为径向对称的羽毛。异位局部Wnt3a梯度的产生使倒钩脊向着源头方向移动,并产生了异位轴。我们进一步表明Wnt3a梯度的方向是由真皮乳头(DP)决定的。在机翼隐蔽羽毛和乳房羽绒羽毛之间交换DP证明,羽毛的对称性和分子梯度均与DP的来源一致。因此,羽毛表皮细胞的命运不是通过某些分子代码预先确定的,而是可以调节的。总之,我们的数据表明羽毛由DP→Wnt梯度→螺旋倒钩脊组织→羽轴的创建→双边对称序列形成。我们推测可以通过调节分子梯度的方向和斜率来实现多种羽毛形式,然后调整羽毛上皮的拓扑结构,从而将分子活性与器官形式和新功能联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号