...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Experimental determination of the radiation dose limit for cryocooled protein crystals
【24h】

Experimental determination of the radiation dose limit for cryocooled protein crystals

机译:低温冷却蛋白晶体辐射剂量限值的实验确定

获取原文
获取原文并翻译 | 示例
           

摘要

Radiation damage to cryocooled protein crystals during x-ray structure determination has become an inherent part of macromolecular diffraction data collection at third-generation synchrotrons. Generally, radiation damage is an undesirable component of the experiment and can result in erroneous structural detail in the final model. The characterization of radiation damage thus has become an important area for structural biologists. The calculated dose limit of 2 x 10(7) Gy for the diffracting power of cryocooled protein crystals to drop by half has been experimentally evaluated at a third-generation synchrotron source. Successive data sets were collected from four holoferritin and three apoferritin crystals. The absorbed dose for each crystal was calculated by using the program RADDOSE after measurement of the incident photon flux and determination of the elemental crystal composition by micro-particle-induced x-ray emission. Degradation in diffraction quality and specific structural changes induced by synchrotron radiation then could be compared directly with absorbed dose for different dose/dose rate regimes: a 10% lifetime decrease for a 10-fold dose rate increase was observed. Remarkable agreement both between different crystals of the same type and between apoferritin and holoferritin was observed for the dose required to reduce the diffracted intensity by half (D-1/2). From these measurements, a dose limit of D-1/2 = 4.3 (+/- 0.3) x 10(7) Gy was obtained. However, by considering other data quality indicators, an intensity reduction to I-In2 = In2 x I-0, corresponding to an absorbed dose of 3.0 x 10(7) Gy, is recommended as an appropriate dose limit for typical macromolecular crystallography experiments.
机译:在X射线结构确定过程中对低温冷却的蛋白质晶体的辐射损伤已成为第三代同步加速器大分子衍射数据收集的固有部分。通常,辐射损伤是实验的不良组成部分,并可能导致最终模型中的结构细节错误。因此,辐射损伤的表征已成为结构生物学家的重要领域。在第三代同步加速器源上已通过实验评估了计算出的2 x 10(7)Gy剂量极限,该剂量极限使低温冷却的蛋白质晶体的衍射力下降一半。从四个全铁蛋白和三个脱铁蛋白晶体收集了连续的数据集。在测量入射光子通量并通过微粒诱导的X射线发射确定元素晶体组成之后,使用程序RADDOSE计算每个晶体的吸收剂量。然后可以将同步加速器辐射引起的衍射质量下降和特定结构变化直接与不同剂量/剂量率方案下的吸收剂量进行比较:观察到剂量率增加10倍,寿命缩短了10%。对于将衍射强度降低一半(D-1 / 2)所需的剂量,观察到相同类型的不同晶体之间以及脱铁铁蛋白和全铁蛋白之间的显着一致性。通过这些测量,获得D-1 / 2 = 4.3(+/- 0.3)×10(7)Gy的剂量极限。但是,通过考虑其他数据质量指标,建议将强度降低到I-In2 = In2 x I-0(对应于3.0 x 10(7)Gy的吸收剂量)作为典型的大分子晶体学实验的合适剂量极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号