首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Novel nanocomposites from spider silk-silica fusion (chimeric) proteins
【24h】

Novel nanocomposites from spider silk-silica fusion (chimeric) proteins

机译:蜘蛛丝-二氧化硅融合(嵌合)蛋白的新型纳米复合材料

获取原文
获取原文并翻译 | 示例
           

摘要

Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5-10 mu m in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5-2 mu m in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials.
机译:硅藻中的二氧化硅骨架结构的特征在于形态学和纳米结构的细节。蜘蛛和蚕的丝蛋白在自然界中形成了强大而复杂的自组装纤维生物材料。通过设计,合成和表征新型嵌合蛋白家族,我们将丝绸和生物硅的特征结合在一起,随后用于模型材料形成反应。 Nephila clavipes蜘蛛拉丝蚕丝的主要壶腹spidroin 1(MaSp1)蛋白的域提供了对结构和形态学细节的控制,因为它可以通过包括薄膜浇铸和纤维静电纺丝在内的多种加工方法进行自组装。硅藻中的生物二氧化硅纳米结构是在中性pH和低温的水性环境条件下形成的。在相似的环境条件下,源自梭状丝囊藻的硅蜡蛋白的R5肽诱导并调节嵌合蛋白设计中的二氧化硅沉淀。单独在R5肽存在下进行的矿化反应会形成直径分布为0.5-10微米的二氧化硅颗粒,而在新型融合蛋白存在下进行的反应会生成纳米复合材料,其中纳米颗粒的粒径分布更窄,为0.5直径-2微米。此外,我们证明可以通过控制生产薄膜和纤维的加工条件来调节复合材料的形态和结构。这些结果表明,嵌合蛋白为处理和控制二氧化硅的粒径提供了新的选择,这对于生物医学和特种材料具有重要的益处,尤其是考虑到这些新材料的所有水性加工和纳米复合材料特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号