...
首页> 外文期刊>Proceedings of the IEEE >Perspectives on Energy Storage for Flexible Electronic Systems
【24h】

Perspectives on Energy Storage for Flexible Electronic Systems

机译:柔性电子系统能量存储的观点

获取原文
获取原文并翻译 | 示例
           

摘要

If truly thin embedded and human worn flexible electronics are to become a commercial reality for wearable electronics, medical devices, and internet of things tags, effective energy storage technologies that safely and robustly match the mechanical flexibility of the overall system form factor are required. At the same time, the energy and transient power needs of functions such as wireless connectivity, information display, and high sample rate sensing must be supported. These capabilities have time-dependent power and current requirements often not captured in simple energy and capacity metrics. In this paper, a progression of energy storage approaches, challenges and learning experiences will be presented from the perspective of an energy storage technology developer. The essential requirements for energy storage for feature-driven applications in flexible electronics are addressed with the goal of finding the most compelling fit between products needs, consumer safety and the technology capabilities of different energy storage approaches. Micropower modules from supercapacitors to microbatteries and their limitations for flexible electronics will be discussed in terms of capacity, power and charge retention as the starting point. Following this discussion, limitations of lithium technologies in this flexible and thin ( 1 mm) application space are also outlined. This paper then presents a review of key requirements for energy storage for high functionality flexible electronics prototype systems and some approaches that have been explored to meet those needs. This leads to the conclusion that safe, low cost, flexible electronics energy storage requirements may be most appropriately met using intrinsically stable battery chemistry. Furthermore, such a materials approach allows for simpler lower cost processing and packaging, such as additive printing and roll to roll processing of thin - nd therefore more mechanically flexible cells. Examples and performance data from such a zinc polymer battery technology are given and compared to other thin and flexible battery approaches.
机译:如果真正的薄型嵌入式和人工穿戴式柔性电子设备成为可穿戴电子设备,医疗设备和物联网标签的商业现实,那么就需要安全可靠地匹配整个系统外形的机械灵活性的有效储能技术。同时,必须满足诸如无线连接,信息显示和高采样率传感之类功能的能量和瞬态功率需求。这些功能具有随时间变化的功率和电流需求,而通常在简单的能量和容量指标中却没有体现。本文将从储能技术开发人员的角度介绍储能方法,挑战和学习经验的进展。满足了柔性电子中功能驱动应用对能量存储的基本要求,其目标是在产品需求,消费者安全和不同能量存储方法的技术能力之间找到最引人注目的契合点。将以容量,功率和电荷保持为出发点,讨论从超级电容器到微型电池的微功率模块及其对柔性电子产品的局限性。在进行了此讨论之后,还概述了锂技术在这种灵活,薄(1毫米)的应用空间中的局限性。然后,本文介绍了功能强大的柔性电子原型系统对能量存储的关键要求,并探讨了满足这些需求的一些方法。由此得出结论,使用本质上稳定的电池化学成分可以最适当地满足安全,低成本,灵活的电子能量存储要求。此外,这种材料方法允许更简单,更低成本的加工和包装,例如增材印刷以及薄卷到卷卷的加工,因此具有更高的机械柔韧性。给出了来自此类锌聚合物电池技术的示例和性能数据,并将其与其他轻薄而灵活的电池方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号