...
首页> 外文期刊>Progress in Energy and Combustion Science >Progress in probability density function methods for turbulent reacting flows
【24h】

Progress in probability density function methods for turbulent reacting flows

机译:湍流反应流的概率密度函数方法研究进展

获取原文
           

摘要

Probability density function (PDF) methods offer compelling advantages for modeling chemically reacting turbulent flows. In particular, they provide an elegant and effective resolution to the closure problems that arise from averaging or filtering the highly nonlinear chemical source terms, and terms that correspond to other one-point physical processes (e.g., radiative emission) in the instantaneous governing equations. This review is limited to transported PDF methods, where one models and solves an equation that governs the evolution of the one-point, one-time PDF for a set of variables that determines the local thermochemical and/or hydrodynamic state of a reacting system. Progress over the previous 20-25 years (roughly since Pope's seminal paper [24]) is covered, with emphasis on developments over the past decade. For clarity and concreteness, two current mainstream approaches are adopted as baselines: composition PDF and velocity-composition PDF methods for low-Mach-number reacting ideal-gas mixtures, with standard closure models for key physical processes (e.g., mixing models), and consistent hybrid Lagrangian particle/Eulerian mesh numerical solution algorithms. Alternative formulations, other flow regimes, additional physics, advanced models, and alternative solution algorithms are introduced and discussed with respect to these baselines. Important developments that are discussed include velocity-composition-frequency PDF's, PDF-based methods as subfilter-scale models for large-eddy simulation (filtered density function methods), PDF-based modeling of thermal radiation heat transfer and turbulence-radiation interactions, PDF-based models for soot and liquid fuel sprays, and Eulerian field methods for solving modeled PDF transport equations. Examples of applications to canonical systems, laboratory-scale flames, and practical combustion devices are provided to emphasize key points. An attempt has been made throughout to strike a balance between rigor and accessibility, between breadth and depth of coverage, and between fundamental physics and practical relevance. It is hoped that this review will contribute to broadening the accessibility of PDF methods and to dispelling misconceptions about PDF methods. Although PDF methods have been applied primarily to reacting ideal-gas mixtures using single-turbulence-scale models, multiple-physics, multiple-scale information is readily incorporated. And while most applications to date have been to laboratory-scale nonpremixed flames, PDF methods can be, and have been, applied to high-Damkoehler-number systems as well as to low-to-moderate-Damkoehler-number systems, to premixed systems as well as to nonpremixed and partially premixed systems, and to practical combustion devices as well as to laboratory-scale flames. It is anticipated that PDF-based methods will be adopted even more broadly through the 21st century to address important combustion-related energy and environmental issues.
机译:概率密度函数(PDF)方法为模拟化学反应湍流提供了引人注目的优势。尤其是,它们为因平均或过滤高度非线性化学源项以及与瞬时控制方程式中其他单点物理过程(例如辐射发射)相对应的项而引起的封闭问题提供了一种优雅而有效的解决方案。这篇评论仅限于运输的PDF方法,在该方法中,一个模型建模并求解了一个方程式,该方程式控制着确定一组反应系统局部热化学和/或流体力学状态的一组变量的单点,一次性PDF的演化。涵盖了前20-25年的进展(大致是自教皇的开创性论文[24]之后),重点是过去十年的发展。为了清楚和具体起见,目前采用了两种主流方法作为基准:低马赫数反应性理想气体混合物的成分PDF和速度成分PDF方法,以及用于关键物理过程的标准封闭模型(例如混合模型),以及一致的混合拉格朗日粒子/欧拉网格数值解算法。关于这些基准,介绍并讨论了替代公式,其他流动方式,附加物理原理,高级模型和替代解决方案算法。讨论的重要进展包括速度-成分-频率PDF,基于PDF的方法作为用于大涡流模拟的子滤波器规模模型(滤波密度函数方法),基于PDF的热辐射传热和湍流-辐射相互作用建模,PDF烟灰和液体燃料喷雾的基于模型的模型,以及求解建模的PDF传输方程的欧拉场方法。提供了规范系统,实验室规模的火焰和实际燃烧设备的应用示例,以强调关键点。在整个过程中,都试图在严谨性和可访问性之间,覆盖范围和广度之间以及基本物理和实际相关性之间取得平衡。希望这次审查将有助于拓宽PDF方法的可访问性,并消除有关PDF方法的误解。尽管PDF方法已主要用于使用单湍流尺度模型对理想气体混合物进行反应的方法,但很容易结合多物理场,多尺度信息。尽管迄今为止,大多数应用都是用于实验室规模的非预混火焰,但PDF方法可以并且已经应用​​于高Damkoehler数系统,中低Damkoehler数系统以及预混系统。以及非预混和部分预混系统,以及实用的燃烧装置以及实验室规模的火焰。预计在21世纪,基于PDF的方法将被更广泛地采用,以解决与燃烧有关的重要能源和环境问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号