...
首页> 外文期刊>Progress in Energy and Combustion Science >Modeling of combustion and ignition of solid-propellant ingredients
【24h】

Modeling of combustion and ignition of solid-propellant ingredients

机译:固体推进剂成分燃烧和点火的建模

获取原文
           

摘要

Techniques for modeling energetic-material combustion and ignition have evolved tremendously in the last two decades and have been successfully applied to various solid-propellant ingredients. There has been a paradigm shift in the predictive capability of solid-propellant combustion models as the field has advanced from a simple and global-kinetics approach to a detailed approach that employs elementary reaction mechanisms in the gas phase, and accommodates thermal decomposition and subsequent reactions in the condensed phase. The detailed models not only allow calculation of propellant burning-rate characteristics, such as pressure and temperature sensitivities, but also of the surface conditions and entire combustion-wave structure, including the spatial variations in temperature and species concentrations. This paper provides a comprehensive review of recent advances in the modeling and simulation of various solid-propellant ingredients over a wide range of ambient conditions. The specific materials of concern include nitramines (RDX, HMX), azides (GAP), nitrate esters (NG, BTTN, TMETN), ADN, and AP monopropellants, as well as homogeneous mixtures representing binary (RDX/GAP, HMX/GAP, and AP/HTPB) and ternary (RDX/GAP/BTTN) pseudo-propellants. Emphasis is placed on the steady-state combustion and laser-induced ignition of nitramines. The capabilities and deficiencies of existing approaches are addressed. In general, the detailed gas-phase reaction mechanisms developed so far represent the chemistry of monopropellants and associated mixtures consistently well, and help understand the intricate processes of solid-propellant combustion. The reaction mechanisms in the condensed phase, however, still pose an important challenge. Furthermore, the current knowledge of the initial decomposition of molecules emerging from the propellant surface is insufficient to render the models fully predictive. Modeling is thus not yet a predictive tool, but it is a useful guide. In the near future, it is likely that detailed combustion models can assist in the formulation of advanced solid propellants meeting various performance and emission requirements.
机译:在过去的二十年中,用于建模高能材料燃烧和点火的技术已经发生了巨大的发展,并已成功应用于各种固体推进剂成分。固体推进剂燃烧模型的预测能力发生了范式转变,因为该领域已从简单的全局动力学方法发展为采用气相基本反应机理并适应热分解和后续反应的详细方法。在浓缩阶段。详细的模型不仅可以计算推进剂的燃烧速率特性(例如压力和温度敏感性),还可以计算表面条件和整个燃烧波结构,包括温度和物质浓度的空间变化。本文全面回顾了在各种环境条件下各种固体推进剂成分的建模和仿真方面的最新进展。所关注的具体材料包括硝胺(RDX,HMX),叠氮化物(GAP),硝酸酯(NG,BTTN,TMETN),ADN和AP单推进剂,以及代表二元化合物(RDX / GAP,HMX / GAP,和AP / HTPB)和三元(RDX / GAP / BTTN)伪推进剂。重点放在硝胺的稳态燃烧和激光诱导的点火上。解决了现有方法的功能和不足。总的来说,到目前为止开发的详细的气相反应机理始终很好地代表了单一推进剂及其相关混合物的化学性质,并有助于理解固体推进剂燃烧的复杂过程。然而,在冷凝相中的反应机理仍然提出了重要的挑战。此外,从推进剂表面出现的分子的初始分解的当前知识不足以使模型具有完全的预测性。因此,建模尚不是预测工具,但它是有用的指南。在不久的将来,详细的燃烧模型可能会帮助制定满足各种性能和排放要求的高级固体推进剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号