首页> 外文期刊>Progress in Nuclear Energy >Review of pool boiling critical heat flux (CHF) and heater rod design for CHF experiments in TREAT
【24h】

Review of pool boiling critical heat flux (CHF) and heater rod design for CHF experiments in TREAT

机译:审查TREAT中用于CHF实验的池沸腾临界热通量(CHF)和加热棒设计

获取原文
获取原文并翻译 | 示例
       

摘要

Preventing the occurrence of a departure from nucleate boiling (DNB) event is an important aspect of nuclear safety in pressurized water reactors (PWRs). This phenomenon is partially governed by the cladding-to-coolant heat transfer under transient irradiation conditions, such as during a reactivity-initiated accident (RIA). Currently, there are large uncertainties about cladding-to-coolant heat transfer under these rapid transient conditions. This effort aims to elucidate the mechanisms of CHF under in-pile fast transient irradiation conditions using the Transient Reactor Test (TREAT) facility. These experiments will be carried out under pool boiling conditions, within experimental capsules that will be inserted into the TREAT reactor. A heater rodlet made from stainless steel 304 with tailored natural boron content will be usedin these experiment capsules to induce CHF when submitted to a TREAT power pulse. We will investigate the impacts of the presence of an oxide layer, radiation-induced surface activation (RISA), heat transfer time constant, and rapid surface heating effects on the CHF phenomenon.We review the parameters with significant effects governing the predictions of pool boiling CHF. Only CHF influencing parameters that are highly important, among them coolant subcooling and pressure, as well as oxide layer thickness, RISA, and rapid heating effects were included in this literature assessment.Preliminary neutronics and thermal hydraulic results from the design of the experimental apparatus are also presented in this paper. To aid in the modeling approach, the energy deposition and occurrence of CHF were identified as the most crucial key Figures of Merit (FoMs).In the heater rod design, boron concentrations between 0.1 and 2.09 wt% were considered. Further, a self-shielding study was performed to determine whether an instrumented borated tube could be used in place of a solid borated rod. This study determined that the inner region of the rod can be excluded or instrumented without heat generation penalties. Lastly, a thermal-hydraulics sensitivity study determined the lowest limiting boron concentration needed to induce CHF in water with different degrees of subcooling. Additionally, the value of CHF is known to increase during a rapid transient. Therefore, a CHF multiplier sensitivity study determined what multipliers would inhibit CHF for varying degrees of subcooling of two chosen power coupling factors (PCFs). The current borated tube rodlet geometry configuration achieved a maximum CHF multiplier value of 7.8 using a 1400 MJ power pulse in TREAT. Although this was the power pulse with the greatest energy deposition considered for this study, the TREAT facility is capable of pulses up to similar to 2500 MJ. This provides a significant margin in energy capacity that was not included within the scope of the calculations carried out to date.The application of the heater rod design was successfully demonstrated in initial experiments in December 2019. The results of these experiments will be explored in future publications.
机译:防止发生核沸腾(DNB)事件是压水堆(PWR)核安全的重要方面。这种现象部分由瞬态辐照条件下(如在反应性引发事故(RIA)期间)的覆层至冷却剂传热所控制。当前,在这些快速瞬态条件下,包层至冷却剂的热传递存在很大的不确定性。这项工作旨在使用瞬态反应堆测试(TREAT)装置阐明堆内快速瞬态辐射条件下CHF的机理。这些实验将在水池沸腾条件下,在将插入TREAT反应器的实验胶囊内进行。当接受TREAT功率脉冲时,将在这些实验胶囊中使用由量身定制的天然硼含量的不锈钢304制成的加热棒,以诱发CHF。我们将研究氧化层的存在,辐射诱导的表面活化(RISA),传热时间常数以及快速的表面加热对CHF现象的影响。我们将对影响池沸腾预测的重要参数进行审查。瑞士法郎。该文献评估仅包括非常重要的CHF影响参数,其中包括冷却剂过冷和压力,以及氧化物层厚度,RISA和快速加热效果。实验设备设计得出的初步中子学和热工水力结果为在本文中也有介绍。为了帮助建模,将能量沉积和CHF的出现确定为最关键的品质因数(FoMs)。在加热棒设计中,考虑了硼浓度在0.1至2.09 wt%之间。此外,进行了自我屏蔽研究,以确定是否可以使用仪器化的硼酸化管代替固体硼酸化棒。这项研究确定了棒的内部区域可以被排除或使用仪器而不会产生热量。最后,热工水力敏感性研究确定了在过冷度不同的水中诱导CHF所需的最低极限硼浓度。另外,已知CHF的值会在快速瞬变期间增加。因此,一项CHF乘数敏感性研究确定了在两个选定的功率耦合因子(PCF)的过冷程度不同的情况下,哪种乘数会抑制CHF。使用TREAT中的1400 MJ功率脉冲,当前的硼酸化的管棒形几何形状配置可实现7.8的最大CHF乘数值。尽管这是本研究中考虑的能量沉积最大的功率脉冲,但TREAT设备能够产生的脉冲功率最高可达2500 MJ。这提供了相当大的能量容量裕度,这尚未包括在迄今为止的计算范围内。加热棒设计的应用已在2019年12月的初步实验中成功证明。这些实验的结果将在未来进行探索。出版物。

著录项

  • 来源
    《Progress in Nuclear Energy》 |2020年第5期|103303.1-103303.14|共14页
  • 作者

  • 作者单位

    Univ Tennessee Knoxville TN 37916 USA;

    Idaho Natl Lab Idaho Falls ID 83402 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:18:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号