【24h】

Volcano Seismology

机译:火山地震学

获取原文
获取原文并翻译 | 示例
           

摘要

— A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic regimes and determining their physical and chemical properties; and (3) quantitatively understanding multiphase fluid flow behavior under dynamic volcanic conditions. To realize these goals, not only must we learn how to translate seismic observations into quantitative information about fluid dynamics, but we also must determine the underlying physics that governs vesiculation, fragmentation, and the collapse of bubble-rich suspensions to form separate melt and vapor. Refined understanding of such processes—essential for quantitative short-term eruption forecasts—will require multidisciplinary research involving detailed field measurements, laboratory experiments, and numerical modeling.
机译:—火山地震学的基本目标是了解活跃的岩浆系统,表征这些系统的构造,并确定岩浆能量源区的范围和演化。这种理解对于我们评估喷发行为及其危险影响至关重要。随着便携式宽带地震仪器的出现,具有宽动态范围的数字网络的可用性以及新的强大分析技术的发展,合成高质量地震数据以开发连贯的喷发力学模型的工作正在迅速发展。最新进展的例子有:(1)高分辨率层析成像技术,可在几百米的尺度上成像地下火山结构; (2)使用小孔径地震天线绘制长期(LP)地震活动的时空特性图; (3)非常长周期(VLP)数据的矩张量反演,以推导出岩浆流体的源几何形状和质量输送预算; (4)对液化石油气事件进行频谱分析,以确定岩浆和相关热液的声学特性; (5)火山震源动力学的实验模型。这些有前途的进展为火山流体的力学性质和次火山质输运动力学提供了新的见识。随着新的地震方法加深了我们对地震源的理解,而地球化学方法更好地限制了质量平衡和岩浆行为,我们在阐明导致火山动荡及其地震和气体排放表现的理化过程方面面临着新的挑战。要将地震,地球化学和岩石学观测资料综合到火山行为的综合模型中,还有许多工作要做。未来的重要目标必须包括:(1)解释产生特殊地震现象的岩浆运动,脱气和沸腾事件的关键类型; (2)表征亚火山状态下的多相流体,并确定其理化性质; (3)定量了解动态火山条件下的多相流体流动行为。为了实现这些目标,我们不仅必须学习如何将地震观测结果转化为有关流体动力学的定量信息,而且还必须确定控制气泡,碎裂和富气泡悬浮液崩塌以形成独立的熔体和蒸气的基础物理学。 。对此类过程的精细理解(对于短期短期喷发预测至关重要)将需要多学科研究,包括详细的野外测量,实验室实验和数值模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号