...
首页> 外文期刊>Renewable energy >Development of the direct solar photocatalytic water splitting system for hydrogen production in Northwest China: Design and evaluation of photoreactor
【24h】

Development of the direct solar photocatalytic water splitting system for hydrogen production in Northwest China: Design and evaluation of photoreactor

机译:西北地区用于制氢的直接太阳能光催化水分解系统的开发:光反应器的设计和评估

获取原文
获取原文并翻译 | 示例
           

摘要

A novel CPC reactor for solar photocatalytic hydrogen production was designed and evaluated in the present study. Two operation models, namely the natural circulation model and the gas disturbance model, are proposed and illustrated from the viewpoints of thermodynamics and hydrodynamics. The designed photoreactor is operated under natural circulation for most of the time, with high pressure gas disturbing the sedimentary photocatalysts from time to time. The CPC parameters are designed according to the local meteorological conditions. The reactor performance such as the radiation distribution on the absorber tube, the absorbed solar irradiation, the critical flow rates and the hydrogen productivity are estimated and analyzed. An east-west orientated, north-south angle adjustable and truncated CPC with the concentration ratio of 4.12 is designed for the photoreactor. The required limiting settling velocity is much larger than the natural circulation velocity, which validates the necessity of gas disturbance. The estimated results show that the ideal mean hydrogen productivities are 2.9 L/h and 4.0 L/h in a typical spring and summer week respectively, with the photocatalyst being Cd0.5Zn0.5S. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本研究中设计并评估了一种新型的用于太阳能光催化制氢的CPC反应器。从热力学和流体力学的角度提出并举例说明了两种运行模型,即自然循环模型和气体扰动模型。设计的光反应器大部分时间都是在自然循环下运行,高压气体有时会干扰沉积光催化剂。 CPC参数是根据当地的气象条件设计的。估算并分析了反应堆的性能,例如吸收管上的辐射分布,吸收的太阳辐射,临界流速和氢气生产率。为光反应器设计了东西方向,南北角度可调,截断的CPC,其浓度比为4.12。所需的极限沉降速度远大于自然循环速度,这证明了气体扰动的必要性。估计结果表明,在典型的春季和夏季,理想的平均氢气生产率分别为2.9 L / h和4.0 L / h,光催化剂为Cd0.5Zn0.5S。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Renewable energy》 |2018年第6期|153-163|共11页
  • 作者单位

    Hohai Univ, Coll Mech & Elect Engn, Changzhou 213022, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Powering Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Powering Engn, Xian 710049, Shaanxi, Peoples R China;

    Purdue Univ, Birck Nanotechnol Ctr, Sch Mat Engn, Lyles Sch Civil Engn, W Lafayette, IN 47906 USA;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Powering Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Powering Engn, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CPC reactor; Solar photocatalytic hydrogen production; Solar photocatalysis; Hydrogen production; Solar energy;

    机译:CPC反应器;太阳能光催化制氢;太阳能光催化;制氢;太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号