...
首页> 外文期刊>Renewable & Sustainable Energy Reviews >Microbial fuel cells: An overview of current technology
【24h】

Microbial fuel cells: An overview of current technology

机译:微生物燃料电池:当前技术概述

获取原文
获取原文并翻译 | 示例
           

摘要

Research into alternative renewable energy generation is a priority, due to the ever-increasing concern of climate change. Microbial fuel cells (MFCs) are one potential avenue to be explored, as a partial solution towards combating the over-reliance on fossil fuel based electricity. Limitations have slowed the advancement of MFC development, including low power generation, expensive electrode materials and the inability to scale up MFCs to industrially relevant capacities. However, utilisation of new advanced electrode-materials (i.e. 2D nanomaterials), has promise to advance the field of electromicrobiology. New electrode materials coupled with a more thorough understanding of the mechanisms in which electrogenic bacteria partake in electron transfer could dramatically increase power outputs, potentially reaching the upper extremities of theoretical limits. Continued research into both the electrochemistry and microbiology is of paramount importance in order to achieve industrial-scale development of MFCs. This review gives an overview of the current field and knowledge in regards to MFCs and discusses the known mechanisms underpinning MFC technology, which allows bacteria to facilitate in electron transfer processes. This review focusses specifically on enhancing the performance of MFCs, with the key intrinsic factor currently limiting power output from MFCs being the rate of electron transfer to/from the anode; the use of advanced carbon-based materials as electrode surfaces is discussed.
机译:由于对气候变化的日益关注,对替代性可再生能源发电的研究成为当务之急。微生物燃料电池(MFCs)是一种潜在的途径,可以作为解决过度依赖化石燃料电力的部分解决方案。局限性减慢了MFC开发的进展,包括低发电,昂贵的电极材料以及无法将MFC扩大到与工业相关的能力。但是,利用新的先进电极材料(即2D纳米材料)有望推动电微生物学领域的发展。新的电极材料,加上对透氧菌参与电子转移的机制的更透彻理解,可以显着增加功率输出,有可能达到理论极限的上限。为了实现MFC的工业规模开发,对电化学和微生物学的持续研究至关重要。这篇综述概述了有关MFC的当前领域和知识,并讨论了支持MFC技术的已知机制,该机制允许细菌促进电子转移过程。本文的重点是提高MFC的性能,目前限制MFC输出功率的关键内在因素是电子进出阳极的速率。讨论了使用先进的碳基材料作为电极表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号