...
首页> 外文期刊>Review of Scientific Instruments >Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma
【24h】

Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

机译:激光谢里尔偏转分析法用于丝状非热大气压等离子体的温度分析

获取原文
获取原文并翻译 | 示例
           

摘要

The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measur- ble gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas.
机译:由Ar组成的自组织非热大气压等离子体射流的微细丝产生的热对流的特征在于,采用激光schlieren偏转法(LSD)。作为原理证明,可以同时监测和评估光束路径中与等离子体射流的中性气体温度有关的折射率n的时空变化。对于一般的实际折射率分布,给出了具有圆柱对称性的n(r)高梯度场中激光束的折射。但是,通常采用的Abel方法代表了不适的问题,特别是对于这种等离子体配置。为了使统计误差最小化,提出了一种简单的分析模型。基于此,获得了温度曲线,特别是灯丝芯中的绝对温度,FWHM以及非静态条件下的灯丝动力学集体频率。对于灯丝内部700 K的气体温度,该模型预测的激光束最大偏转角为0.3 mrad,这与LSD获得的实验结果一致。此外,通过实验获得的由毛细管末端的细丝产生的温度曲线的FWHM为(1.5±0.2)mm,约为细丝可视半径的10倍。废水中获得的最高温度为(450±30)K​​,与其他技术的结果一致。该研究表明,LSD代表了一种监控微放电时空行为的有用的低成本方法,并且即使在挑战性的诊断条件下(如移动细的放电灯丝)也可以揭示其动态特性(例如温度曲线)。该方法不限于这里研究的小型化和自组织的等离子体。取而代之的是,它可以很容易地应用于通过局部气体加热产生可测量的折射率梯度的其他配置,并开辟了新的诊断前景,尤其是对于微血浆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号