...
首页> 外文期刊>Pomiary Automatyka Kontrola >Wyniki badań działania układu ATXmega64A3 w niskich temperaturach
【24h】

Wyniki badań działania układu ATXmega64A3 w niskich temperaturach

机译:ATXmega64A3系统在低温下的测试结果

获取原文
获取原文并翻译 | 示例
           

摘要

W artykule przedstawiono wyniki badań dotyczące pracy 8/16-bitowego mikrokontrolera ATXmega64A3 w warunkach kriogenicznych (w temperaturze 77K). W przeprowadzonych eksperymentach obserwowano zachowanie wewnętrznych oscylatorów 2 MHz (oscylator RC) i 32 MHz (oscylator pierścieniowy). Potwierdzono zdolność do prawidłowego działania w tak niskiej temperaturze, a także możliwość zwielokrotnienia sygnału zegarowego z wykorzystaniem pętli PLL, porównano wydajność obliczeniową układu dla różnych warunków pracy.%In this paper the results of experiments with an 8/16-bit ATXmega64A3 microcontroller (ATMEL) at low temperature are presented. The examined devices were immersed in a Dewar flask with liquid nitrogen (Fig. 1). First of all we focused on internal oscillators. There are four types of oscillators inside a microcontroller and we tested two of them: 2 MHz RC and 32 MHz ring oscillator. The results at 77K (liquid nitrogen) were compared to the results at 300K (room temperature). The frequency as a function of the supply voltage for 300K and 77K is shown in Fig. 2 and Fig. 3, respectively. According to the theory of silicon semiconductors, the activity of carriers increases in low temperatures, so there was expected increase in the oscillation frequency. For the ring oscillator (32 MHz) our expectations of the growth of the frequency were confirmed. Due to PLL there was a possibility to increase the frequency, and we reached 64 MHz. Figs. 4 and 5 show the frequency as a function of the supply voltage at 77K in detail. The power consumption was also measured (Fig. 6). With increase in the frequency the increase in the power consumption was obtained (Fig. 7). The value of the power depends on the supply voltage strongly, while on the temperature less, so the results at 300K and 77K do not differ too much (Fig. 8). We also calculated the energy efficiency for the microcontroller under various conditions. The frequency to power coefficient was defined, and the results are shown in Figs.9 and 10. The energy consumption for the example task was estimated (Tab.l) and verified by experiments.
机译:本文介绍了在低温条件下(77K)运行8/16位ATXmega64A3微控制器的研究结果。在进行的实验中,观察到内部振荡器2 MHz(RC振荡器)和32 MHz(环形振荡器)的行为。确认了在如此低的温度下正常工作的能力,以及使用PLL环路进行时钟信号相乘的可能性,并比较了各种工作条件下系统的计算性能。提出了在低温下。将检查过的设备浸入装有液氮的杜瓦瓶中(图1)。首先,我们专注于内部振荡器。微控制器内部有四种类型的振荡器,我们测试了其中两种:2 MHz RC和32 MHz环形振荡器。将77K(液氮)下的结果与300K(室温)下的结果进行比较。频率分别是图2和图3所示的300K和77K电源电压的函数。根据硅半导体理论,载流子的活性在低温下增加,因此预期振荡频率会增加。对于环形振荡器(32 MHz),我们对频率增长的期望得到了确认。由于采用了PLL,因此有可能提高频率,我们达到了64 MHz。无花果图4和5详细示出了频率为77K时电源电压的函数。还测量了功耗(图6)。随着频率的增加,功耗也随之增加(图7)。功率值很大程度上取决于电源电压,而温度则取决于温度,因此300K和77K时的结果相差不大(图8)。我们还计算了各种条件下微控制器的能效。定义了频率与功率系数,结果如图9和10所示。示例任务的能耗被估算(表1),并通过实验进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号