首页> 外文期刊>Sensors and Actuators >Square disks-based crossed architectures of SnO_2 for ethanol gas sensing applications-An experimental and theoretical investigation
【24h】

Square disks-based crossed architectures of SnO_2 for ethanol gas sensing applications-An experimental and theoretical investigation

机译:基于方形磁盘的SnO_2交叉架构在乙醇气体传感应用中的实验与理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

A facile synthesis and characterization of square disks-based crossed architectures of SnO2 are reported in this paper. The prepared crossed architectures of SnO2 were analyzed by different techniques to study their structural, morphological, crystalline, optical, vibrational and scattering properties. From FESEM analysis an average length of the side and width of the square disks shaped structures were similar to 4-5 mu m and 1.0 +/- 0.2 mu m, respectively. Pure tetragonal rutile phase and crystallite size of 38.26 nm were confirmed by XRD studies. A single welldefined exciton peak at 373 nm corresponding to the energy band gap of 3.33 eV was observed from UV-vis spectrum. SnO2 square disks-based crossed architecture based gas sensor showed gas responses of 70.5, 107.5 and 110.9 at operating temperatures of 350, 400 and 450 degrees C, respectively. The response time of 2 s and recovery time of 2018 s, 1081 s, and 708 s were observed for ethanol gas at 350, 400 and 450 degrees C, respectively. Herein, the interaction between ethanol and SnO2 is simulated by Density functional theory (DFT) calculations. B3LYP/LanL2dz level of theory was employed in this study. It was found that the sensitivity of SnO2 sensor to ethanol molecule may be attributed to the depositing of an oxygen atom from the media to the SnO2 surface.
机译:本文报道了基于方形磁盘的SnO2交叉体系的简便合成和表征。通过不同的技术对制备的SnO2的交叉结构进行了分析,以研究其结构,形态,晶体,光学,振动和散射特性。根据FESEM分析,方形盘状结构的侧面平均长度和宽度分别类似于4-5微米和1.0 +/- 0.2微米。 XRD研究证实纯四方金红石相和38.26 nm的微晶尺寸。从紫外可见光谱观察到在373 nm处有一个明确定义的激子峰,对应于3.33 eV的能带隙。基于SnO2方盘的基于交叉架构的气体传感器在350、400和450摄氏度的工作温度下分别显示出70.5、107.5和110.9的气体响应。对于乙醇气体,分别在350、400和450摄氏度下观察到2 s的响应时间和2018 s,1081 s和708 s的恢复时间。在此,通过密度泛函理论(DFT)计算来模拟乙醇和SnO2之间的相互作用。本研究采用B3LYP / LanL2dz理论水平。发现SnO2传感器对乙醇分子的敏感性可能归因于氧原子从介质到SnO2表面的沉积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号