首页> 外文期刊>Shock and vibration >An Experimental Approach to the Measurement of Wall Pressure Generated by an Underwater Spark-Generated Bubble by a Hopkinson Bar
【24h】

An Experimental Approach to the Measurement of Wall Pressure Generated by an Underwater Spark-Generated Bubble by a Hopkinson Bar

机译:霍普金森棒测量水下火花产生的气泡产生的壁压力的实验方法

获取原文
获取原文并翻译 | 示例
           

摘要

The wall pressure loading due to the underwater spark-generated bubble, having served as an efficient technique to study the underwater explosion, has drawn much attention. Compared with the numerical study of the pressure characteristics, the direct experimental investigation is much rarer. Recently, an improved pressure-measuring system by using a Hopkinson pressure bar as the sensing element is proposed, set up, and validated by the current authors. In this article, the improved methodology and experimental system is used to detect and analyze the pressure loading on the target plate surface due to the underwater spark-generated bubble beneath the plate. A series of experiments with 3mm, 5mm, 10mm, 15mm, ..., 60mm standoffs are carried out. The experimental results and the related analysis and discussions are presented. Based on the results, the improved methodology can be used to detect the pressure loading due to the spark-generated bubble. There is multipeak oscillation near the peak of the shock pressure loading profile. The peak pressure versus the standoff is also summarized. According to the characteristics of the induced water jet pressure and the bubble-collapse pressure loading given in this article, enough attention should be paid to not only the jet and the first bubble-collapse pressure loadings but also the secondary bubble-collapse pressure loadings especially when the dimensionless distance >1.
机译:由于水下火花产生的气泡而引起的壁压力负荷已成为研究水下爆炸的有效技术,引起了广泛关注。与压力特性的数值研究相比,直接的实验研究要少得多。最近,作者提出了一种使用霍普金森压力棒作为传感元件的改进的压力测量系统,并得到了验证。在本文中,使用改进的方法和实验系统来检测和分析目标板表面的压力载荷,这是由于板下方的水下火花产生的气泡引起的。进行了一系列3mm,5mm,10mm,15mm,...,60mm支座的实验。给出了实验结果以及相关的分析和讨论。基于结果,改进的方法可用于检测由于火花产生的气泡而引起的压力负荷。在冲击压力负荷曲线的峰值附近存在多峰振荡。还总结了峰值压力与支座的关系。根据本文给出的感应水射流压力和气泡破裂压力载荷的特性,不仅应充分注意射流和第一气泡破裂压力载荷,还要特别注意第二气泡破裂压力载荷。当无量纲距离> 1时。

著录项

  • 来源
    《Shock and vibration》 |2019年第5期|5341317.1-5341317.14|共14页
  • 作者单位

    Harbin Engn Univ Coll Shipbldg Engn Harbin 150001 Heilongjiang Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号