...
首页> 外文期刊>Soil Dynamics and Earthquake Engineering >A displacement/damage controlled seismic design method for MRFs with concrete-filled steel tubular columns and composite beams
【24h】

A displacement/damage controlled seismic design method for MRFs with concrete-filled steel tubular columns and composite beams

机译:用混凝土钢管柱和复合梁MRF的位移/损伤控制地震设计方法

获取原文
获取原文并翻译 | 示例
           

摘要

A displacement/damage controlled (DDC) seismic design method for composite (steel/concrete) frames, consisting of circular concrete-filled steel tube (CFT) columns and composite beams (steel beams connected with concrete floor slabs) is developed in this study. The proposed seismic design method controls displacement and damage in a direct way for all seismic performance levels including the one near collapse. Through empirical expressions this method can estimate the inter-storey drift ratio (IDR) of a designed structure and evaluate the damage index (DI) of critical members for a given seismic intensity. A reduced number of design iterations is achieved while the computationally demanding non-linear time-history analysis can be avoided. The necessary empirical expressions of the design method are derived by means of statistical and sensitivity analysis of a large response databank consists of IDR and DI that cover all the way from elastic behavior to final global dynamic instability. This response databank is created by performing extensive parametric incremental dynamic analyses of many composite framed structures of the kind considered here under many seismic motions and different soil types. Design examples reveal that the DDC design method successfully estimates the targeted IDR for the desired seismic performance level as well as controls the DI in critical beam-to-column joints in order to avoid a soft storey failure mechanism or partial loss of structure. Compared to all steel framed structures, the composite frames considered here exhibit a better seismic performance with beams and columns exhibiting a lower DI. The low-damage performance of composite frames is mainly emphasized as the number of storeys increases, while both the IDR and DI tend to fall within lower performance levels than those of the corresponding all steel frames for the same seismic intensity.
机译:本研究开发了由圆形混凝土填充钢管(CFT)柱(CFT)柱(CFT)柱(CFT)柱(CFT)柱和复合梁(与混凝土楼板连接的钢梁)组成的复合材料(钢/混凝土)框架的位移/损坏控制(DDC)地震设计方法。所提出的地震设计方法以直接方式控制位移和损坏,以便在包括近崩溃的一个地震性能水平。通过经验表达,该方法可以估计设计结构的层间漂移比(IDR),并评估给定地震强度的关键构件的损伤指数(DI)。在可以避免计算要求的非线性时间历史分析的同时,实现了减少的设计迭代。设计方法的必要经验表达式通过大响应数据库的统计和敏感性分析来源,该数据库由IDR和DI组成,该IDR和DI从弹性行为到最终全局动态不稳定。该响应数据库是通过在许多地震运动和不同土壤类型中考虑的许多复合框架结构的广泛参数增量动态分析来创建。设计示例揭示了DDC设计方法成功估计了所需地震性能水平的目标IDR,以及控制临界波​​束接头中的DI,以避免软层面的故障机制或结构部分损失。与所有钢框架结构相比,这里考虑的复合框架表现出更好的地震性能,横梁和柱子表现出下层。复合框架的低损伤性能主要被强调,因为楼层的数量增加,而IDR和DI往往会在比相应的所有钢框架的性能水平下降到相同的地震强度的相应钢框架的较低的性能水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号