...
首页> 外文期刊>Soil Science Society of America Journal >Carbon and Nitrogen Pools in a Tallgrass Prairie Soil under Elevated Carbon Dioxide
【24h】

Carbon and Nitrogen Pools in a Tallgrass Prairie Soil under Elevated Carbon Dioxide

机译:高二氧化碳下高草草原土壤中的碳和氮库

获取原文
获取原文并翻译 | 示例
           

摘要

Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Our objective was to measure pools of soil C and N to assess the potential for C accrual and changes to N stocks as influenced by elevated atmospheric CO2. Treatments (three replications, randomized complete block design) were ambient CO2—no chamber (NC), ambient CO2—chamber (AC), and two times ambient CO2—chamber (EC). Long-term (290 d) incubations (35°C) were conducted to assess changes in the slow soil fractions of potentially mineralizable C (PMC) and potentially mineralizable N (PMN). Potentially mineralizable C was enhanced (P < 0.1) by 19 and 24% in EC relative to AC and NC soil at the 0- to 5- and 5- to 15-cm depths, respectively. Potentially mineralizable N was significantly greater by 14% at the 0- to 5-cm depth in EC relative to AC, but decreased by 12% in EC relative to NC (P < 0.1). Measurements of PMC indicate that increases in total soil C under elevated CO2 in a previous study were a consequence of accrual into the slow pool. Relatively large amounts of new C deposited as a result of elevated CO2 (Cnew) remained in the soil after the 290-d incubation. In contrast to accumulation of C into the slow fraction, Cnew was integrated into a passive fraction of soil organic matter (SOM). Accumulation of N was also detected in the whole soil, which cannot be explained by current estimates of ecosystem N flux.
机译:土壤是潜在的碳汇,可能抵消上升的大气 CO 2 。土壤储存和隔离碳的能力将取决于植物生产力产生的碳输入相对于微生物分解控制的碳输出的比率。我们的目标 是测量土壤中C和N的池,以评估C累积的潜在 和受 大气CO升高影响的N储量的变化。 2 。处理(三重复,随机化 完整块设计)为环境CO 2 -无腔室(NC), 环境CO 2 -腔室(AC)和两倍的环境CO 2 -腔室 (EC)。进行了长期(290 d)孵化(35°C),以评估可能的 可矿化C(PMC)和可能可矿化N(PMN)的缓慢土壤组分的变化)。相对于AC和NC土壤,在0至5和下,相对于AC和NC土壤, 潜在可矿化C的EC增强了19 和24% 5至15厘米深。相对于AC,在 EC的0至5厘米深度处,潜在可矿化的 N显着增加14%,但相对于NC (P <0.1)。 PMC的测量结果表明,在先前的研究中,在CO 2 升高的情况下 总土壤C的增加是 累积到缓慢池中的结果。由于CO 2 (C new )升高而沉积的大量新 C残留在 土壤中经过290天的孵化。与缓慢积累C的方式相反,将C new 整合到土壤有机质(SOM)的被动 部分中。在整个土壤中也检测到了氮的累积,这不能用目前对生态系统氮通量的估算来解释。

著录项

  • 来源
    《Soil Science Society of America Journal》 |2004年第1期|148-153|共6页
  • 作者单位

    Dep. of Agronomy, Kansas State Univ., Manhattan, KS 66506,Kansas State University, 2004 Throckmorton Plant Sciences Center, Dep. of Agronomy, Manhattan, KS 66506-5501;

    3121 Miller Plant Sciences Bldg., University of Georgia, Athens, GA 30606,Kansas State University, 2004 Throckmorton Plant Sciences Center, Dep. of Agronomy, Manhattan, KS 66506-5501;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号