首页> 外文期刊>Solar Energy >Numerical study on thermal stress and cold startup induced thermal fatigue of a water/steam cavity receiver in concentrated solar power (CSP) plants
【24h】

Numerical study on thermal stress and cold startup induced thermal fatigue of a water/steam cavity receiver in concentrated solar power (CSP) plants

机译:聚光太阳能电站水/蒸汽腔接收器热应力和冷启动引起的热疲劳的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The high temperature receivers in CSP plants should startup frequently, so the thermal stress and the fatigue failure are critical important for its safety and stability. In our present study, a computation model is proposed for a water/steam cavity receiver in CSP plant. The model couples the light propagation, the light-heat conversion, the thermo-elasticity and the thermal fatigue analysis together. Monte Carlo ray tracing method (MCRT), finite volume method (FVM) and boiling heat transfer are coupled to get the thermal boundary of the boiling panel. Finite element method (FEM) is adopted to obtain the temperature and stress–strain distribution of the boiling panel. Elastic stress analysis and equivalent stress fatigue assessment method is used to investigate the fatigue failure of the boiling panel. Two different structures of the boiling panel are researched, following results are obtained: The heat flux on the boiling panel is highly non-uniform and it results in the similar non-uniform distributions of temperature and stress-strain as well as the displacement of the boiling panel. The non-uniform stress-strain leads to the warping of the boiling panel and the largest displacement is in the direction normal to the heat absorbing surface toward the cavity internal, the largest displacement range is 17 cm. Fins of the boiling panel at the elbow region (case-1 in the present study) can lead to hot spots of which the temperature is extremely higher than that of boiling tubes, cutting off the fins at the elbow region (case-2 in the present study) can eliminate the hot spots and has no impact on temperature distribution of the boiling panel’s main part. The temperature difference on the cross section of the boiling tube is very high (about 130 °C while the heat flux is about 350 kW/m2) both in radial and circumferential direction, and this high temperature difference results in the high thermal stress on the boiling panel and the maximum thermal stress occurs at the welding region. The welding quality has a significant impact on the fatigue failure of the boiling panel. For a receiver design life of 20 years, membrane wall with cutting off the fins at the elbow region (case-2 in the present study) is a good design and the welding quality level 3 should be ensured at least and only one cold startup for a day is permitted.
机译:CSP工厂中的高温接收器应经常启动,因此热应力和疲劳破坏对其安全性和稳定性至关重要。在我们目前的研究中,为CSP工厂中的水/蒸汽腔接收器提出了一种计算模型。该模型将光传播,光热转换,热弹性和热疲劳分析耦合在一起。结合蒙特卡洛射线追踪法(MCRT),有限体积法(FVM)和沸腾传热来获得沸腾板的热边界。采用有限元方法(FEM)来获得沸腾板的温度和应力-应变分布。弹性应力分析和等效应力疲劳评估方法用于研究沸腾板的疲劳破坏。对沸腾板的两种不同结构进行了研究,得出以下结果:沸腾板上的热通量高度不均匀,导致相似的温度和应力应变不均匀分布以及热位移。沸腾的面板。应力应变不均匀会导致沸腾板翘曲,最大的位移是在垂直于吸热面的方向上朝向腔体内部,最大的位移范围为17 cm。肘部区域(本研究中的情况1)的沸腾板翅片会导致温度远高于沸腾管温度的热点,从而切断肘部区域(翅片中的情况2)的翅片。目前的研究)可以消除热点,并且对沸腾板主体的温度分布没有影响。沸腾管横截面的温度在径向和圆周方向上都非常高(大约130 C,而热通量大约为350 kW / m2),并且这种高的温度差会导致沸腾管的热应力较高。面板沸腾,并且最大热应力发生在焊接区域。焊接质量对沸腾板的疲劳破坏有重要影响。对于接收器设计寿命为20年的情况,在肘部区域切掉鳍片的膜壁(本研究中为案例2)是一种良好的设计,并且应确保至少达到焊接质量等级3,并且只有一个冷启动用于允许一天。

著录项

  • 来源
    《Solar Energy》 |2018年第8期|430-441|共12页
  • 作者单位

    State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University;

    School of Chemical Engineering and Technology, Xi’an Jiaotong University;

    School of Mechanical and Electrical Engineering, Xi’an Polytechnic University;

    State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University,School of Chemical Engineering and Technology, Xi’an Jiaotong University;

    State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermal stress; Fatigue failure; Cavity receiver; Membrane wall; Solar power tower;

    机译:热应力疲劳破坏空腔接收器膜墙太阳能塔;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号