首页> 外文期刊>Solid State Communications >Progress towards single spin optoelectronics using quantum dot nanostructures
【24h】

Progress towards single spin optoelectronics using quantum dot nanostructures

机译:使用量子点纳米结构的单自旋光电子学的进展

获取原文
获取原文并翻译 | 示例
           

摘要

We summarise recent progress in our understanding of the physics of fundamental charge and spin excitations in quantum dot semiconductor nanostructures. Many novel potential applications of these nanostructures have arisen from the strong optical non-linearities that exist in the few-particle quantum dot absorption spectrum. By comparison, the interaction of the electron spin with other localised charges in the dot and surroundings and its coupling to environmental degrees of freedom in zero-dimensional electronic systems is still comparatively poorly understood. Here, we present recent investigations that demonstrate that the electron spin is a very stable quantum number in zero dimensional heterostructures. It couples only very weakly to the solid-state environment via spin orbit interaction due to the discrete quantum dot electronic structure. Using specially designed 'spin memory' devices we optically generate and orientate individual electron spins in quantum dots with the frequency selectivity provided by optical excitation. Time resolved spectroscopy is used to probe their relaxation dynamics as a function of magnetic field, lattice temperature and quantum dot size. The results of these measurements show that spin relaxation in quantum dot nanostructures is strongly suppressed when compared with systems of higher dimensionality and, moreover, demonstrate that the longitudinal spin relaxation occurs over millisecond timescales at low temperatures and large static magnetic fields. With static magnetic fields in excess of B = 4 T, the spin relaxation is shown to proceed via spin orbit interaction mediated by single phonon scattering processes. (C) 2005 Elsevier Ltd. All rights reserved.
机译:我们总结了对量子点半导体纳米结构中基本电荷和自旋激发的物理学的最新进展。这些纳米结构的许多新颖的潜在应用是由少数粒子量子点吸收光谱中存在的强光学非线性引起的。相比之下,在零维电子系统中,电子自旋与点和周围其他局部电荷的相互作用以及其与环境自由度的耦合仍然相对较不为人所知。在这里,我们目前的研究表明,电子自旋是零维异质结构中非常稳定的量子数。由于离散的量子点电子结构,它通过自旋轨道相互作用仅非常弱地耦合到固态环境。使用专门设计的“自旋存储器”设备,我们可以通过光激发提供的频率选择性,以量子点的形式生成并定向单个电子自旋。时间分辨光谱法用于探测其弛豫动力学与磁场,晶格温度和量子点尺寸的关系。这些测量的结果表明,与高维系统相比,量子点纳米结构中的自旋弛豫得到了显着抑制,此外,还证明了纵向自旋弛豫发生在毫秒级的时标上,且发生在低温和大静磁场下。当静态磁场超过B = 4 T时,表明自旋弛豫是通过单声子散射过程介导的自旋轨道相互作用进行的。 (C)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号