...
首页> 外文期刊>Thermal engineering >Geothermal Heat Supply in Russia
【24h】

Geothermal Heat Supply in Russia

机译:俄罗斯地热热源

获取原文
获取原文并翻译 | 示例
           

摘要

— Geothermal heat supply occupies the second place among the renewable energy sources around the world in installed capacity (70.3 GW) and in the amount of generated thermal energy (163 (TW h)/year). It is outperformed only by solar heat supply (480 GW and 395 (TW h)/year). The use of geothermal heat involves the need to drill wells and fulfill special requirements for development of geothermal fields and construction of heat-supply systems. There are deep (more than 400-m deep) and shallow geothermal heat-supply systems (GHSSs). More than 66 geothermal fields have been explored in 11 regions of Russia, and the operating reserves total more than 300 000 m~(3)/day. The installed capacity of Russian GHSSs totals 310 MW. Differences between open- and closed-loop GHSSs are pointed out. For open-loop GHSSs, their typical process circuit arrangements implemented in Krasnodar krai and in the cities of Kizlyar and Makhachkala are presented. The GHSS process circuits with the use of heat pumps (HPs) for recovering the heat of spent geothermal water and systems operating in combination with solar units are considered. Systems that use highly mineralized geothermal heat carriers from different geological horizons with heating of sweet water, as well as GHSSs with pumpless circulation of heat carrier, are described. The article gives examples of GHSSs equipped with geothermal circulation systems (GCSs) implemented in the Khankala geothermal field in the city of Grozny, including the double GCS with the design capacity equal to 8.7 MW and the GCS in the Medvedevka settlement in the Dzhankoi raion of Crimea, a distinctive feature of which is that it uses wellhead methane for generating electricity and for additionally heating the heat carrier in the peaking modes of operation. In constructing open- and closed-loop surface GHSSs, heat pumps are commonly used. In the first case, the heat of underground or surface water bodies is used, while horizontal or vertical heat exchangers are applied in the second case. Examples of geothermal heat-supply systems are given: the surface GHSS in the city of Makhachkala, in which ground heat exchangers in combination with solar units are used, and the GHSS in the city of Krasnodar, which serves for heating an administrative building and for cooling it in summer. The key scientific–technical problems requiring further investigations and development for constructing efficient and competitive geothermal heat-supply systems in different regions of the country are formulated.
机译:- 地热供应占据全球的可再生能源中的第二个位置(70.3 GW),并且在产生的热能(163(TW)/年)中。它仅通过太阳能供热(480 GW和395(TW H)/年)优于优势。地热量的使用涉及钻井井,满足地热场的发展和供暖系统的构建的特殊要求。有深(深度为400米)和浅层地热供应系统(GHSS)。在俄罗斯11个地区探讨了超过66个地热田,运营储备总量超过300 000米〜(3)/天。俄罗斯GHSS的装机容量总计310兆瓦。指出了开放和闭环GHSS之间的差异。对于开环GHSS,介绍了在Krasnodar Krai和Kizlyar和Makhachkala的城市中实施的典型过程电路布置。考虑了GHSS处理电路,用于使用热泵(HPS)来恢复花费与太阳能电池组合使用的地热水和系统的热量。描述了使用来自不同地质视野的高度矿化地热热载体的系统,以及加热甜水,以及具有热载体的疏忽循环的GHSS。本文举例说明,在格罗泽尼市的Khankala地热场中实施了地热循环系统(GCSS),包括Dzhankoi Raion的梅德韦省雷达中的Dzhankoi Raion中的Dzhankoi Raion中的Dzhankoi Raion中的Dzhankoi Raion中的khankala地热场(GCS)。克里米亚是一种独特的特征,即它使用井口甲烷来发电,并且用于另外在峰值操作模式下加热热载体。在构造开放和闭环表面GHSS时,通常使用热泵。在第一种情况下,使用地下或表面水体的热量,而水平或垂直热交换器在第二壳体中施加。给出了地热供应系统的实例:Makhachkala市的表面GHS,其中使用与太阳能单元的地面热交换器组合,以及Krasnodar市的GHS,用于加热行政建筑和在夏天冷却它。制定了需要进一步调查和开发在该国不同地区构建高效和竞争性地热供应系统的关键科学技术问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号