...
首页> 外文期刊>Thin-Walled Structures >Collision performance and multi-objective robust optimization of a combined multi-cell thin-walled structure for high speed train
【24h】

Collision performance and multi-objective robust optimization of a combined multi-cell thin-walled structure for high speed train

机译:高速列车组合多单元薄壁结构的碰撞性能和多目标鲁棒优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Based on the Simplified Super Folding Element (SSFE) theory, the theoretical prediction of average crushing force (F-avg) for multi-cell thin-walled structures is inferred and a combined five-cell thin-walled structure used in high speed train is proposed and investigated in this paper. The finite element model of the proposed structure and the theoretical prediction are validated by a full scaled impact experiment. Then, parametric studies are performed to evaluate the effects of design variables, including the thickness (t) and the side length (a) of the orthohexagonal cell, on collision responses based on the validated FE model and theoretical prediction. It is found that both specific energy absorption (SEA) and the maximum initial force (F-max) are obviously affected by the design parameters. Particularly, the effect of parameter t on crushing performance is greater than that of parameter a. In further, to minimize the F-max and maximum SEA under the constraint of F-avg a multi-objective robust optimization methodology is adopted. The Optimal Latin Hypercube Design (OLHD) and orthogonal design are combined to perform Design of Experiment (DoE) and dual response surface models (DRSM) are constructed for the optimization. The optimal results of deterministic optimization indicate that the F-avg decreases by 11.07% compared with the original design while the robust optimization optimal result of F-max decreases by 10.01%. However, the robust optimization optimal design is more acceptable considering the robustness, which means the robust optimization is more attractive than deterministic optimization in practical engineering application.
机译:基于简化超折叠单元(SSFE)理论,推导了多单元薄壁结构的平均压溃力(F-avg)的理论预测,并得出了高速列车中使用的组合五单元薄壁结构的理论推导。本文提出和研究。通过全面的冲击实验验证了所提出结构的有限元模型和理论预测。然后,基于已验证的有限元模型和理论预测,进行参数研究以评估设计变量(包括正交六边形单元的厚度(t)和边长(a))对碰撞响应的影响。发现设计参数明显地影响了比能量吸收(SEA)和最大初始力(F-max)。特别地,参数t对破碎性能的影响大于参数a。另外,为了在F-avg的约束下最小化F-max和最大SEA,采用了多目标鲁棒优化方法。最佳拉丁超立方体设计(OLHD)和正交设计相结合来执行实验设计(DoE),并构造了双重响应曲面模型(DRSM)进行了优化。确定性优化的最佳结果表明,与原始设计相比,F-avg降低了11.07%,而F-max的鲁棒优化优化结果则降低了10.01%。但是,考虑到鲁棒性,鲁棒优化最优设计是可以接受的,这意味着在实际工程应用中,鲁棒优化比确定性优化更具吸引力。

著录项

  • 来源
    《Thin-Walled Structures》 |2019年第2期|341-355|共15页
  • 作者单位

    Cent S Univ, Sch Traff & Transportat Engn, Minist Educ, Key Lab Traff Safety Track, Changsha 410075, Hunan, Peoples R China|Cent S Univ, State Key Lab High Performance Complex Mfg, Changsha 410006, Hunan, Peoples R China;

    Cent S Univ, Sch Traff & Transportat Engn, Minist Educ, Key Lab Traff Safety Track, Changsha 410075, Hunan, Peoples R China|Cent S Univ, State Key Lab High Performance Complex Mfg, Changsha 410006, Hunan, Peoples R China;

    Cent S Univ, Sch Traff & Transportat Engn, Minist Educ, Key Lab Traff Safety Track, Changsha 410075, Hunan, Peoples R China|Cent S Univ, Joint Int Res Lab Key Technol Rail Traff Safety, Changsha 410075, Hunan, Peoples R China;

    Cent S Univ, Sch Traff & Transportat Engn, Minist Educ, Key Lab Traff Safety Track, Changsha 410075, Hunan, Peoples R China;

    Cent S Univ, Sch Traff & Transportat Engn, Minist Educ, Key Lab Traff Safety Track, Changsha 410075, Hunan, Peoples R China|Cent S Univ, Natl & Local Joint Engn Res Ctr Safety Technol Ra, Changsha 410075, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High speed train; Multi-cell thin-walled structure; Crashworthiness; Multi-objective robust optimization; Dual response surface;

    机译:高速列车;多单元薄壁结构;耐撞性;多目标鲁棒优化;双响应面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号