...
首页> 外文期刊>Transport in Porous Media >Coupled Upscaling Approaches For Conduction, Convection, and Radiation in Porous Media: Theoretical Developments
【24h】

Coupled Upscaling Approaches For Conduction, Convection, and Radiation in Porous Media: Theoretical Developments

机译:多孔介质中传导,对流和辐射的耦合放大方法:理论发展

获取原文
获取原文并翻译 | 示例
           

摘要

This study deals with macroscopic modeling of heat transfer in porous media subjected to high temperature. The derivation of the macroscopic model, based on thermal non-equilibrium, includes coupling of radiation with the other heat transfer modes. In order to account for non-Beerian homogenized phases, the radiation model is based on the generalized radiation transfer equation and, under some conditions, on the radiative Fourier law. The originality of the present upscaling procedure lies in the application of the volume averaging method to local energy conservation equations in which radiation transfer is included. This coupled homogenization mainly raises three challenges. First, the physical natures of the coupled heat transfer modes are different. We have to deal with the coexistence of both the material system (where heat conduction and/or convection take place) and the non-material radiation field composed of photons. This radiation field is homogenized using a statistical approach leading to the definition of radiation properties characterized by statistical functions continuously defined in the whole volume of the porous medium. The second difficulty concerns the different scales involved in the upscaling procedure. Scale separation, required by the volume averaging method, must be compatible with the characteristic length scale of the statistical approach. The third challenge lies in radiation emission modeling, which depends on the temperature of the material system. For a semi-transparent phase, this temperature is obtained by averaging the local-scale temperature using a radiation intrinsic average while a radiation interface average is used for an opaque phase. This coupled upscaling procedure is applied to different combinations of opaque, transparent, or semi-transparent phases. The resulting macroscopic models involve several effective transport properties which are obtained by solving closure problems derived from the local-scale physics.
机译:这项研究涉及高温下多孔介质中传热的宏观模型。基于热非平衡的宏观模型的推导包括辐射与其他传热模式的耦合。为了考虑非Beerian的均匀相,辐射模型基于广义辐射传输方程,并且在某些条件下基于辐射傅里叶定律。本升级程序的创意在于将体积平均方法应用于包含辐射传输的局部能量守恒方程。这种耦合均质化主要提出了三个挑战。首先,耦合传热模式的物理性质是不同的。我们必须处理物质系统(发生热传导和/或对流的地方)和由光子组成的非物质辐射场的共存。使用统计方法对该辐射场进行均质化,从而得出辐射特性的定义,其特征是在多孔介质的整个体积中连续定义的统计函数。第二个困难涉及升级过程中涉及的不同规模。体积平均法要求的刻度分离必须与统计方法的特征长度刻度兼容。第三个挑战在于辐射发射模型,这取决于材料系统的温度。对于半透明相,该温度是通过使用辐射固有平均值对局部尺度温度求平均而将辐射界面平均值用于不透明相而获得的。该耦合的放大过程被应用于不透明,透明或半透明相位的不同组合。最终的宏观模型包含了几种有效的输运性质,这些性质是通过解决源自局部尺度物理学的闭合问题而获得的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号