首页> 外文期刊>Wind Energy >Rigid matlab drivetrain model of a 500 kW wind turbine for predicting maximum gear tooth stresses in a planetary gearbox using multibody gear constraints
【24h】

Rigid matlab drivetrain model of a 500 kW wind turbine for predicting maximum gear tooth stresses in a planetary gearbox using multibody gear constraints

机译:基于多体齿轮约束的500 kW风力发电机组的刚性Matlab传动系统模型,用于预测行星齿轮箱中的最大齿轮齿应力

获取原文
获取原文并翻译 | 示例
           

摘要

The aeroelastic flex 5 code and a semi-advanced rigid multibody model has been utilized for simulating drivetrain forces and moments in a real 500 kW wind turbine. Experimental validation is carried out with results based on known physical properties of the blades, tower, hub, gearbox, shaft and nacelle, etc. The multibody model consists of eight bodies, from rotor to generator, where most joints are made using simple constraints. Semi-advanced gear constraints are used for obtaining (worst-case) gear tooth reaction forces in the first stage of the planetary gearbox. This constraint is useful for not only transferring torque but also for calculating the gear tooth and internal body reaction forces. The method is appropriate for predicting gear tooth stresses without considering all the complexity of gear tooth geometries. This means that, e.g. gear tooth load-sharing and load-distribution among multiple planetary gears are not taken into account. Finite Element Method (FEM) calculations show that when the wind turbine runs close to the maximum wind speed, the maximum gear tooth stress is in the range of 500-700 MPa, which is considered to be realistic using a "worst-case" method. The presented method is based on a comprehensive description of the aerodynamic input, including inflow turbulence and shear, as well as various modifications for yaw, dynamic stall and dynamic inflow. Forces and torque from the aeroelastic and industry-accepted code flex 5 are used as input to the multibody program, where the gear constraint is formulated such that the maximum tooth forces are included directly in the solution.
机译:气动弹性flex 5代码和半高级刚性多体模型已用于模拟实际500 kW风力涡轮机中的传动系统力和力矩。根据叶片,塔架,轮毂,齿轮箱,轴和机舱等的已知物理特性,对结果进行实验验证。多体模型由八个主体组成,从转子到发电机,其中大多数关节都是使用简单约束进行制作的。在行星齿轮箱的第一级中,使用半高级齿轮约束来获得(最坏情况)齿轮齿反作用力。该约束不仅对于传递扭矩有用,而且对于计算齿轮齿和内部反作用力也是有用的。该方法适用于预测齿轮应力,而无需考虑齿轮几何形状的所有复杂性。这意味着例如没有考虑齿轮齿的负载分担和多个行星齿轮之间的负载分配。有限元方法(FEM)计算表明,当风力涡轮机接近最大风速运行时,最大齿轮齿应力在500-700 MPa的范围内,使用“最坏情况”方法被认为是现实的。提出的方法是基于对空气动力学输入的全面描述,包括入流湍流和切变以及偏航,动态失速和动态入流的各种修改。来自气动和行业认可的代码flex 5的力和扭矩被用作多体程序的输入,在此程序中,齿轮约束被公式化为使得最大齿力直接包含在解决方案中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号