首页> 外文学位 >Additive Manufactured Microstructures and Designs for High Heat Flux Dissipation During Pool Boiling
【24h】

Additive Manufactured Microstructures and Designs for High Heat Flux Dissipation During Pool Boiling

机译:助剂制造的微结构和池沸腾过程中高热通量的设计

获取原文
获取原文并翻译 | 示例

摘要

Heat dissipation is vital in industries requiring predictable operating temperatures while also producing large heat fluxes. These industries include electronics and power generation. For electronics, as more devices fit on a smaller area, the heat flux increases dramatically. Pool boiling offers a solution to electronic cooling due to extremely high heat transfer with a low temperature change. Previous research has focused on coatings and precision manufacturing to create microchannels and features for boiling augmentation. However, this is limited to designs for subtractive processes. The use of additive manufacturing (AM) offers a novel way of thinking of design for boiling enhancement. 3-D boiling structures are fabricated out of aluminum using the Vader System's magnetojet printer. Three generations of geometric structures are created: a volcano-with-holes, a miniaturized volcano-with-holes, and a modular volcano-with-holes. These designs are not easily manufactured using standard techniques. As such, three-dimensional bubble dynamics are currently being explored using high speed imaging and particle image velocimetry. By printing a volcano shape with base holes, the liquid and vapor phases are physically separated in a process termed macroscale liquid-vapor pathways.;The singular volcano-with-holes chips achieved a maximum heat flux of 217.3 W/cm2 with a maximum heat transfer coefficient (HTC) of 97.2 kW/m2K (81% improvement over plain). By producing four volcanoes on a single chip, the liquid flow length inside the volcano, which acts as the entrance length, is reduced by 50% and the HTC greatly increased. The highest performing miniaturized volcano-with-holes chip reached a maximum heat flux of 223.1W/cm2 with a maximum HTC of 139.1 kW/m2K (150% improvement over plain). Additionally, the highest performing miniaturized chip was printed on top of a microchannel array. This resulted in combined enhancement from both microchannel and bubble dynamics resulting in a maximum heat flux of 228.4 W/cm2 with a HTC of 339.6 kW/m 2K (533% improvement over plain). Finally, a modular structure was created to determine the individual influence of conduction and bubble dynamic augmentation on boiling enhancement. The modular designs show an 83% improvement in CHF (202.4 W/cm2) over plain copper chips and a 83% improvement in HTC(139.0 kW/m2K ). This indicates boiling enhancement arises from three-dimensional control over bubble dynamics, resulting in macroscale separate liquid-vapor pathways.
机译:在要求可预测的工作温度同时还产生大量热通量的行业中,散热至关重要。这些行业包括电子和发电。对于电子设备,随着越来越多的设备安装在更小的区域上,热通量会急剧增加。由于极高的热传递和较低的温度变化,池沸腾为电子冷却提供了解决方案。先前的研究集中在涂料和精密制造上,以创建微通道和沸腾增强功能。但是,这仅限于减法过程的设计。增材制造(AM)的使用提供了一种新颖的沸腾增强设计思路。 3-D沸腾结构是使用Vader System的磁喷打印机由铝制成的。创建了三代几何结构:带孔火山,带孔微型火山和带孔模块化火山。使用标准技术不容易制造这些设计。因此,目前正在使用高速成像和粒子图像测速技术来探索三维气泡动力学。通过打印带有基孔的火山形状,液相和气相在称为宏观液汽通道的过程中被物理分离。单个带孔火山碎片在最大热量下的最大热通量为217.3 W / cm2传输系数(HTC)为97.2 kW / m2K(比平地提高81%)。通过在单个芯片上生产四个火山,火山内部的液体流动长度(作为入口长度)减少了50%,HTC大大增加了。性能最高的微型带孔火山芯片达到最大热通量223.1W / cm2,最大HTC为139.1 kW / m2K(比平地提高150%)。另外,性能最高的微型化芯片被印刷在微通道阵列的顶部。这导致了微通道和气泡动力学的共同增强,导致最大热通量为228.4 W / cm2,HTC为339.6 kW / m 2K(比平地提高533%)。最后,创建了一个模块化结构,以确定传导和气泡动态增强对沸腾增强的个体影响。模块化设计显示,相比普通铜芯片,CHF(202.4 W / cm2)降低了83%,HTC(139.0 kW / m2K)降低了83%。这表明沸腾的增强是由于对气泡动力学的三维控制而产生的,从而导致了宏观上独立的液体-蒸气通道。

著录项

  • 作者

    Hayes, Austin.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

  • 入库时间 2022-08-17 11:40:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号