首页> 外文学位 >Vibration isolation and shock protection for MEMS.
【24h】

Vibration isolation and shock protection for MEMS.

机译:MEMS的隔振和防震保护。

获取原文
获取原文并翻译 | 示例

摘要

Forces arising from environmental sources have profound influence on the functioning of microelectromechanical (MEMS) devices. Two examples include mechanical vibration and shock, which can significantly degrade the performance and reliability of MEMS. Mechanical vibrations can generate unwanted device output, and shock loads can permanently damage device structures. Thus, there is strong motivation to understand and to mitigate the adverse effects of shock and vibration on MEMS devices.;The effects of mechanical vibrations and the means to mitigate them are not well understood. Herein, we present detailed analyses that identify how vibration degrades device performance, especially for MEMS gyroscopes. Two classes of gyroscopes are studied and modeled in detail: Tuning fork gyroscopes (TFG) and vibrating ring gyroscopes (VRG). Despite their differential operation, all capacitive TFGs are affected by vibration due to nonlinear characteristics of their capacitive drive/sense electrodes, while some TFG designs are shown to be more vibration-tolerant than others by >99%. By contrast, VRGs remain immune to vibration effects due to the decoupling of vibration excited modes and sensing modes. Overall, vibration effects in gyroscopes and other MEMS can also be reduced by integrating a vibration-isolation platform, and TFG's vibration sensitivity is improved by >99% using a properly-designed platform.;Prior shock protection in MEMS has utilized two strategies: optimizing device-dimensions and hard shock stops. While both strategies afford protection, they also incur a trade-off in shock versus device performance Two new shock-protection technologies are developed herein: (1) nonlinear-spring shock stops and (2) soft-coating shock stops. The nonlinear springs form compliant motion-limiting stops that reduce impact. Similarly, soft coating stops utilize a soft thin-film layer on an otherwise hard surface to increase the surface compliance and energy dissipation. Both solutions decrease the impact forces generated between the device mass and the shock stops, and enable wafer-level, batch fabrication processes compatible with microfabrication techniques. Simulation and experimental results clearly demonstrate that both solutions offer superior shock protection compared to conventional hard shock stops. Following testing of more than 70 devices, we observe a twenty fold increase in device-survival rate for devices protected either by silicon nonlinear-spring stop or by Parylene soft-coating stops.
机译:来自环境的力对微机电(MEMS)器件的功能具有深远的影响。机械振动和冲击是两个例子,这会大大降低MEMS的性能和可靠性。机械振动会产生有害的设备输出,冲击载荷会永久损坏设备结构。因此,人们有很强的动机去理解和减轻冲击和振动对MEMS器件的不利影响。机械振动的影响以及减轻振动的方法尚未得到很好的理解。在此,我们提供详细的分析,这些分析可确定振动如何降低设备性能,尤其是对于MEMS陀螺仪而言。对两类陀螺仪进行了详细研究和建模:音叉陀螺仪(TFG)和振动环陀螺仪(VRG)。尽管它们的工作方式不同,但所有电容式TFG均会因其电容式驱动/检测电极的非线性特性而受到振动的影响,而某些TFG设计显示出比其他设计更耐振的能力,大于99%。相比之下,由于振动激发模式和感测模式的解耦,VRG仍然不受振动影响。总体而言,通过集成隔振平台还可以减少陀螺仪和其他MEMS的振动影响,并且使用适当设计的平台可以将TFG的振动灵敏度提高99%以上; MEMS的先前防震保护采用了两种策略:优化设备尺寸和硬震动停止。虽然这两种策略都能提供保护,但它们也会在冲击性能与设备性能之间做出取舍。在此开发了两种新的冲击保护技术:(1)非线性弹簧冲击止动件和(2)软涂层冲击止动件。非线性弹簧形成柔顺的运动限制挡块,可减少冲击。类似地,软涂层停止层在原本坚硬的表面上利用软薄膜层来增加表面柔韧性和能量耗散。两种解决方案都可以减少在装置质量和减震器之间产生的冲击力,并使晶圆级的批量制造工艺与微加工技术兼容。仿真和实验结果清楚地表明,与传统的硬质减震器相比,这两种解决方案均提供了出色的减震保护。在对70多个器件进行测试之后,我们观察到受硅非线性弹簧挡块或聚对二甲苯软涂层挡块保护的器件的器件存活率提高了20倍。

著录项

  • 作者

    Yoon, Sang Won.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号