首页> 外文学位 >Osmotically-driven membrane processes for water reuse and energy recovery.
【24h】

Osmotically-driven membrane processes for water reuse and energy recovery.

机译:渗透驱动的膜工艺,用于水的再利用和能量回收。

获取原文
获取原文并翻译 | 示例

摘要

Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery.;This work focused on innovative applications of osmotically-driven membrane processes.;The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen.;Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes.;Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, for the first time, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate FO membrane and NaCl feed and draw solutions closely matched model predictions. Power density was substantially reduced due to internal concentration polarization in the asymmetric membrane and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.
机译:渗透驱动的膜工艺是一类新兴的膜分离工艺,其利用浓盐水分离液流。它们的应用广泛性使其成为水回用和能量生产/回收的有吸引力的替代品。这项工作集中于渗透驱动膜工艺的创新应用。提出了一种新颖的用于水回用的渗透膜生物反应器(OMBR)系统。实验结果表明,高可持续通量和相对较低的溶质从汲取溶液向混合液的反向扩散。膜结垢极少,可通过渗透反冲洗进行控制。已发现OMBR系统可去除99%以上的有机碳和铵氮。正向渗透(FO)可以在其过程中采用不同的抽吸溶液。筛选了500多种无机化合物作为汲取溶液的候选材料,台式筛选过程产生了14种适用于FO应用的汲取溶液。然后在实验室中测试了14种汲取溶液,以评估水通量和盐反向穿过膜的扩散。结果表明,取决于所使用的汲取溶液,水通量和盐的反向扩散范围很广。发现内部浓度极化通过降低膜的支撑层与致密层之间的界面处的汲取溶液浓度来降低水通量和反向盐分扩散。发现一小部分汲取溶液最适合使用目前可用的FO膜进行FO工艺。渗透驱动膜工艺的另一种应用是阻滞渗透(PRO)。 PRO被认为是可行的可再生能源。开发了PRO模型来预测特定实验条件下的水通量和功率密度。使用台式PRO系统的实验结果测试了预测模型。由于缺乏合适的膜和膜组件,PRO的先前研究无法验证模型预测。在本次调查中,首次使用定制的实验室规模膜模块可以收集实验性PRO数据。用平板状三醋酸纤维素FO膜和NaCl进料和抽取溶液获得的结果与模型预测值非常匹配。由于不对称膜中的内部浓度极化,并且由于盐的通过程度较小,因此功率密度大大降低。发现外部浓度极化在降低渗透压驱动力方面显示出相对较小的作用。使用预测性PRO模型,可以确定最佳的膜特性和模块配置,以设计专门针对PRO工艺量身定制的系统。

著录项

  • 作者

    Achilli, Andrea.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Engineering Sanitary and Municipal.;Energy.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;环境污染及其防治;能源与动力工程;
  • 关键词

  • 入库时间 2022-08-17 11:37:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号