首页> 外文学位 >Fabrication, characterization, and simulation of photonic bandgap structures.
【24h】

Fabrication, characterization, and simulation of photonic bandgap structures.

机译:光子带隙结构的制造,表征和仿真。

获取原文
获取原文并翻译 | 示例

摘要

Photonic bandgap (PBG) structures are artificial materials which are featured with periodically changed refractive index having a periodicity in the range of optical wavelengths. The studies in PBG structures are making rapid progress. However, the investigations of three-dimensional (3-D) PBG structures are still challenging.;In this work, laser-assisted fabrication of 3-D PBG structures based on self-assembled silica colloidal crystals was developed. 3-D PBG structures were fabricated by laser-assisted nano-imprinting and laser-assisted chemical vapor deposition (LCVD), based on the self-assembled silica colloidal crystals. Silica colloidal crystals were self-assembled on silicon substrates using isothermal heating evaporation-induced self-assembly. To infiltrate the silica colloidal crystals, the laser-assisted imprinting technique was used using a short pulse (23 ns pulse duration) of a KrF excimer laser. The nanosecond laser pulse instantaneously melted the silicon substrates, which infiltrated and solidified over the assembled silica particles on the substrates. By removing silica particles embedded in the silicon using hydrofluoric acid, inverseopal PBG structures were produced. In the LCVD technique, a continuous-wave Nd:YAG laser (1.064 mum wavelength) and a CO2 laser (10.6 mum wavelength) were used as the energy source. Silica-core-silicon-shell PBG structures were obtained. This technique is capable of fabricating structures with various PBGs by obtaining different silicon-shell thickness with different LCVD parameters.;Both theoretical calculations and experimental measurements to investigate the optical properties of the PBG structures were carried out. Spectroscopic ellipsometry was used to identify PBGs. The plain-wave expansion (PWE) method was used to calculate the photonic-band diagrams of the structures, which agreed with the experimental results. The calculation also provided fitting results of the Si-shell thicknesses.;To investigate the properties of PBG structures and develop functional devices, a 2-D electrically tunable PBG device was designed using the PWE method. After the designing the structure materials and the structural parameters, the behavior of the tunable PBG device is simulated with the FDTD method. To explore the optical properties of 3-D PBG structures, a method of analyzing the optical refraction in 3-D PBG structures is proposed, with which it is possible to calculate the refraction light path in an arbitrary 3-D PBG structure using a personal computer.
机译:光子带隙(PBG)结构是人造材料,其特征在于具有周期性变化的折射率,该折射率在光波长范围内具有周期性。 PBG结构的研究正在迅速发展。然而,对三维(3-D)PBG结构的研究仍具有挑战性。在这项工作中,开发了基于自组装二氧化硅胶体晶体的激光辅助3-D PBG结构的制造方法。基于自组装二氧化硅胶体晶体,通过激光辅助纳米压印和激光辅助化学气相沉积(LCVD)制备了3-D PBG结构。使用等温加热蒸发诱导的自组装将二氧化硅胶体晶体自组装在硅基底上。为了渗透二氧化硅胶体晶体,使用了激光辅助压印技术,该技术使用了KrF准分子激光器的短脉冲(脉冲持续时间为23 ns)。纳秒激光脉冲瞬间熔化了硅基板,硅基板渗透并固化在基板上的组装二氧化硅颗粒上。通过使用氢氟酸去除嵌入在硅中的二氧化硅颗粒,生产了反蛋白的PBG结构。在LCVD技术中,使用连续波Nd:YAG激光器(波长为1.064微米)和CO2激光器(波长为10.6微米)作为能源。获得了硅核-硅壳PBG结构。该技术能够通过使用不同的LCVD参数获得不同的硅壳厚度来制造具有各种PBG的结构。;进行了理论计算和实验测量,以研究PBG结构的光学特性。椭圆偏振光谱法用于鉴定PBG。用平波扩展法(PWE)计算结构的光子能带图,与实验结果吻合。计算还提供了硅壳厚度的拟合结果。为了研究PBG结构的性能并开发功能器件,使用PWE方法设计了二维电可调PBG器件。在设计了结构材料和结构参数之后,使用FDTD方法模拟了可调谐PBG器件的性能。为了探索3-D PBG结构的光学特性,提出了一种分析3-D PBG结构的光学折射的方法,利用该方法可以使用个人计算任意3-D PBG结构中的折射光路。电脑。

著录项

  • 作者

    Wang, Hao.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;光学;
  • 关键词

  • 入库时间 2022-08-17 11:37:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号