首页> 外文学位 >Semiconductor nanowire devices: Novel morphologies and applications to electrogenic biological systems.
【24h】

Semiconductor nanowire devices: Novel morphologies and applications to electrogenic biological systems.

机译:半导体纳米线设备:新型形态及其在电生物系统中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The interface between nanoscale semiconductors and biological systems represents a powerful means for molecular-scale, two-way communication between these two diverse yet complementary systems. In this thesis, I present a general methodology for the synthesis of semiconductor nanowires with rationally-defined material composition and geometry. Specifically, I demonstrate that this technique can be used to fabricate silicon nanowires, hollow nanostructures (e.g. nanotubes, nanocones and branched tubular networks), and Ge/Si heterostructures that exhibit 1D hole gasses. Using bottom-up assembly techniques, nanostructures are subsequently built into arrays containing up to tens of nanowire field-effect transistors (NW-FETs) that exhibit exquisite sensitivity to local charges. Significantly, this robust assembly technique enables integration of disparate materials (e.g. n- and p-type silicon nanowires) on virtually any type of substrate. These arrays are particularly useful for integration with biological systems.;I will demonstrate that at the single-cell level, silicon nanowire device arrays can be integrated with mammalian neurons. Discrete hybrid structures enable neuronal stimulation and recording at the axon, dendrite, or soma with high sensitivity and spatial resolution, while aligned arrays containing up to 50 devices can be used to measure the speed and temporal evolution of signals or to interact with a single cell as multiple inputs and outputs. I analyze the shape and magnitude of reported signals, and place within the context of previously reported results.;Hybrid interfaces can also be extended to entire organs such as embryonic chicken hearts. NW-FET signals are synchronized with the beating heart, and the signal amplitude is directly related to the device sensitivity. Multiplexed measurements made from NW-FET arrays further show that signal propagation across the myocardium can be mapped, with a potential resolution significantly better than microelectrode techniques. I exploit the unique capability of the bottom-up approach to fabricate NW-FET arrays on flexible and transparent plastic substrates, and demonstrate that these novel device arrays enable signal recording in a number of conformations as well as registration of devices to the heart surface. Taken together, these findings demonstrate that nanowire device arrays are a robust platform for studying electrically-active systems at the single-cell or whole- tissue level, and could enable fundamental studies of cellular-level biophysics, real-time drug assays, and novel implants.
机译:纳米级半导体和生物系统之间的界面代表了这两种不同但互补的系统之间进行分子级双向通信的强大手段。在本文中,我提出了一种具有合理定义的材料组成和几何形状的半导体纳米线合成的通用方法。具体而言,我证明了该技术可用于制造呈现一维空穴气体的硅纳米线,中空纳米结构(例如纳米管,纳米锥和分支管状网络)以及Ge / Si异质结构。使用自下而上的组装技术,纳米结构随后被构建到包含多达数十个对局部电荷表现出出色灵敏度的纳米线场效应晶体管(NW-FET)的阵列中。重要的是,这种坚固的组装技术能够在几乎任何类型的基板上集成不同的材料(例如n型和p型硅纳米线)。这些阵列对于与生物系统整合特别有用。我将证明,在单细胞水平上,硅纳米线设备阵列可以与哺乳动物神经元整合。离散的混合结构能够以高灵敏度和空间分辨率在轴突,树突或躯体上进行神经元刺激和记录,而包含多达50个设备的对齐阵列可用于测量信号的速度和时间演变或与单个细胞相互作用作为多个输入和输出。我分析了报告信号的形状和大小,并将其放置在先前报告的结果中。混合界面还可以扩展到整个器官,例如胚胎鸡心。 NW-FET信号与跳动的心脏同步,并且信号幅度与设备灵敏度直接相关。由NW-FET阵列进行的多路复用测量进一步表明,可以映射跨心肌的信号传播,其电位分辨率明显优于微电极技术。我利用了自下而上方法在柔性和透明塑料基板上制造NW-FET阵列的独特能力,并演示了这些新颖的设备阵列能够以多种构造记录信号以及将设备对准心脏表面。综上所述,这些发现表明,纳米线设备阵列是用于研究单细胞或整个组织水平的电活性系统的强大平台,并且可以实现细胞水平生物物理学,实时药物测定和新颖研究的基础研究。植入物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号