首页> 外文学位 >Modeling and characterization of RF MEMS resonators.
【24h】

Modeling and characterization of RF MEMS resonators.

机译:RF MEMS谐振器的建模和表征。

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, a multitude of micro-electro-mechanical (MEMS) devices have been developed and commercialized due to their low power consumption, reduced cost and compact size. In recent years, significant advancements in technology have extended MEMS development towards radio frequency, microwave and millimeter wave applications.;The need for micro-machining and MEMS based systems for RF and microwave applications arises from the inherent limitations of existing RF devices. Motivation for incorporating MEMS based fabrication technologies into microwave and millimeter wave systems can be classified into three main categories: precision, system integration and performance. As frequency increases, the size of RF components decreases. [1] For this reason, it is crucial that the dimensions of the RF components remain in the sub-millimeter range, necessitating high precision fabrication techniques. Such precision is only achievable through the micro-machining methodology. For a complete useful RF application, these components also need to operate properly when integrated with other analog functions such as filters, oscillators or mixers. The micro-machined RF components are fully compatible with complete system integration. Finally, the performance of these devices is also notable. Due to their capability of achieving a high quality factor or Q, reducing insertion loss and increasing bandwidth, RF MEMS devices have gained largely popularity in recent years. Such devices, especially resonators, can also be fabricated to achieve very high Q (in the tens of thousands range) for frequencies up to and beyond 10 MHz. [2];A key limitation in commercializing RF MEMS devices, such as resonators, is the reliability factor. Reliability requirements of different MEMS devices are specific and unique to the type and purpose of their application. Understanding the reliability of RF devices stems primarily from the knowledge of their failure behavior and mechanisms, which are: stiction, delamination, dampening and mechanical failure over a long period of time. [2] Unfortunately, at the time of this writing, there has not been enough research and development to fully understand these reliability issues.;This research focuses on some of the factors of mechanical failure by investigating the effect of the changes in the elastic properties on the resonant and damping characteristics of the resonator beam. In an attempt to eliminate this mechanical failure, both the linear and nonlinear behavior of RF MEMS resonators are investigated and a strategy is developed to improve the performance through both modeling and understanding the complete dynamics of RF MEMS devices. The complete resonator dynamics is investigated with the aid of the Agilent Advanced Systems (ADS) and MathCAD software packages. Furthermore, an amplifier circuit is designed which is integrated with the resonator model via wire bond and then characterized using an Agilent E5071C Series Network Analyzer. This improves the Q-factor (between 100 and 150) and the S 21 parameter (between 10 dB and 25 dB) of the resonator significantly. Without the amplifier circuit, Q-factor is found to be between 10 and 50 and S21 between -40 and -60 dB. Thus, this model is an innovative method of reducing undesired insertion loss, thereby, improving the performance of the resonator model.
机译:在过去的十年中,由于它们的低功耗,降低的成本和紧凑的尺寸,已经开发并商业化了许多微机电(MEMS)器件。近年来,技术的重大进步已将MEMS的开发范围扩展到了射频,微波和毫米波应用中。对RF和微波应用的基于微加工和MEMS的系统的需求源于现有RF设备的固有局限性。将基于MEMS的制造技术整合到微波和毫米波系统中的动机可分为三大类:精度,系统集成度和性能。随着频率增加,RF组件的尺寸减小。 [1]因此,至关重要的是,RF组件的尺寸必须保持在亚毫米范围内,这需要高精度的制造技术。这种精度只能通过微加工方法来实现。对于完整有用的RF应用,这些组件在与其他模拟功能(例如滤波器,振荡器或混频器)集成时也需要正确运行。微加工的射频组件与完整的系统集成完全兼容。最后,这些设备的性能也很显着。由于射频MEMS器件具有实现高品质因数或Q,减少插入损耗和增加带宽的能力,因此近年来获得了广泛的普及。这样的设备,特别是谐振器,也可以制造成在高达10 MHz或超过10 MHz的频率上实现很高的Q(在几万范围内)。 [2];商业化RF MEMS器件(例如谐振器)的关键限制是可靠性因素。不同MEMS器件的可靠性要求是特定的,并且对于它们的应用类型和目的是唯一的。了解RF设备的可靠性主要是基于对它们的故障行为和机理的了解,这些知识包括:长时间的静摩擦,分层,阻尼和机械故障。 [2]不幸的是,在撰写本文时,还没有足够的研究和开发来完全理解这些可靠性问题。;本研究通过研究弹性特性变化的影响,着重研究了一些机械失效因素。谐振器梁的谐振和阻尼特性。为了消除这种机械故障,研究了RF MEMS谐振器的线性和非线性行为,并制定了一种通过建模和理解RF MEMS器件的完整动力学来提高性能的策略。借助安捷伦高级系统(ADS)和MathCAD软件包,可以研究完整的谐振器动力学特性。此外,设计了一个放大器电路,该放大器电路通过引线键合与谐振器模型集成在一起,然后使用Agilent E5071C系列网络分析仪进行表征。这显着改善了谐振器的Q因子(介于100和150之间)和S 21参数(介于10 dB和25 dB之间)。如果没有放大器电路,则Q因子在10到50之间,S21在-40到-60 dB之间。因此,该模型是减少不期望的插入损耗,从而提高谐振器模型性能的创新方法。

著录项

  • 作者

    Khan, Najla S.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2009
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号