...
首页> 外文期刊>International Journal of Engineering Research and Applications >Modelling And Simulation Of Industrial FCC Unit: Analysis Based On Five-Lump Kinetic Scheme For Gas-Oil Cracking
【24h】

Modelling And Simulation Of Industrial FCC Unit: Analysis Based On Five-Lump Kinetic Scheme For Gas-Oil Cracking

机译:工业催化裂化装置的建模与仿真:基于五集动力学方案的气-油裂化分析

获取原文
           

摘要

Models which describe the performance of the riser and regenerator reactors of fluid catalytic cracking (FCC) unit are presented. The riser-reactor is modelled as a plug-flow reactor operating adiabatically, using five-lump kinetics for the cracking reactions. The regenerator-reactor is divided into a dilute region and a dense region, with the dense region divided into a bubble-phase and an emulsion phase. The bubble-phase of the regenerator is modelled as a plug-flow reactor, while the emulsion phase is modelled as a continuous stirred tank reactor. The models are validated using plant data obtained from a functional industrial FCC unit. It is shown that predictions of the models compare very well with plant data for both reactors. Simulation results indicate that catalyst-to-gas oil ratio and inlet-air velocity have significant effects on the performance of the riser and regenerator reactors respectively. The yield of gasoline and other products of the catalytic cracking process increase as the height of riser-reactor increases, with maximum yield of gasoline (of about 0.45 mass fraction) occurring about half-way up the riser-height. Both the amount of coke on spent catalyst and the riser-temperature decrease with time, while the regenerator-temperature increases with time. The riser-temperature varies from about 650K to 800K, while the regenerator-temperature ranges from about 650K to 1080K. The optimum values of process variables obtained for effective operation of FCC are inlet-air velocity of 14m/s, riser-temperature of about 653K, and catalyst-gas oil ratio of 3
机译:提出了描述流体催化裂化(FCC)装置的提升管和再生器反应器性能的模型。提升管反应器被建模为绝热运行的活塞流反应器,对裂化反应使用五集流动力学。再生器-反应器分为稀区域和致密区域,该致密区域分为气泡相和乳液相。再生器的气泡相建模为活塞流反应器,而乳化相建模为连续搅拌釜反应器。使用从功能性工业FCC装置获得的工厂数据对模型进行验证。结果表明,模型的预测与两个反应堆的工厂数据都很好地比较。仿真结果表明,催化剂与瓦斯油的比例和进气速度分别对立管反应器和再生器反应器的性能产生重大影响。催化裂化过程中汽油和其他产物的收率随立管反应器高度的增加而增加,最大的汽油收率(约0.45质量分数)出现在立管高度的中途。废催化剂上的焦炭量和提升管温度均随时间降低,而再生器温度则随时间升高。提升管温度在大约650K至800K之间变化,而再生器温度在大约650K至1080K之间。为使FCC有效运行而获得的过程变量的最佳值为进气速度为14m / s,提升管温度约为653K,催化剂气油比为3

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号