...
首页> 外文期刊>Plant and Soil >Applying a solute transfer model to phytoextraction: Zinc acquisition by Thlaspi caerulescens
【24h】

Applying a solute transfer model to phytoextraction: Zinc acquisition by Thlaspi caerulescens

机译:将溶质转移模型应用于植物提取:Thlaspi caerulescens采集锌

获取原文
获取原文并翻译 | 示例
           

摘要

Phytoextraction is the removal of metals from contaminated soils into harvested plant tissues. The rate of phytoextraction is governed by both soil and plant characteristics. Most effort has focused on identifying appropriate plants for phytoextraction, but the benefits from this effort will be marginal unless the metals are in phytoavailable forms in the rhizosphere. The concentration of a metal in the rhizosphere can be estimated using solute transfer models that incorporate: the metal concentration in the bulk soil solution, the buffer power of the soil, diffusion coefficient for the metal, water movement, root size and morphology, and the rate of entry of metal into the roots. Here a solute transfer model is developed to predict the concentration of Zn in the rhizosphere solution ([Zn](ext)) of Thlaspi caerulescens, a hyperaccumulator species that could be exploited for Zn phytoextraction. The model predicts that Zn accumulation by T. caerulescens is sub-optimal when the Zn concentration in the bulk soil solution is < 27 μM. Such a high [Zn](ext) is rare in contaminated agricultural soils, but is possible in the metalliferous substrates where T. caerulescens is endemic. Sensitivity analyses indicate that Zn diffusion is more important than transpiration-driven mass flow for Zn delivery to the root, implying that management of soil physical and hydrological properties will improve phytoextraction. Sensitivity analyses also imply that strategies to enhance the Zn absorption power of the root will not necessarily be successful for enhancing phytoextraction per se. Thus, research into enhancing Zn availability and mobility in soil will be as important as understanding and manipulating Zn uptake by plants. In general, such models can be used to identify constraints to efficient phytoextraction (whether plant or soil) and to determine whether commercial phytoextraction is feasible.
机译:植物提取是将金属从受污染的土壤中转移到收获的植物组织中。植物提取的速率受土壤和植物特性的共同控制。大多数努力都集中在确定合适的植物进行植物提取上,但是除非金属在根际中以植物可用的形式存在,否则这种努力的好处将是微不足道的。可以使用溶质转移模型估算根际中金属的浓度,该模型包括:整体土壤溶液中的金属浓度,土壤的缓冲能力,金属的扩散系数,水的迁移,根的大小和形态,以及金属进入根部的速度。在这里建立了一个溶质转移模型,以预测拟南芥(Thlaspi caerulescens)的根际溶液([Zn](ext))中的Zn浓度,这是一种可用于锌植物提取的超积累物种。该模型预测,当散装土壤溶液中的Zn浓度小于27μM时,青枯菌对Zn的积累不理想。如此高的[Zn](ext)在受污染的农业土壤中很少见,但在青枯菌(T. caerulescens)特有的含金属基质中可能出现。敏感性分析表明,对于锌向根的传递,锌的扩散比蒸腾驱动的质量流量更为重要,这意味着对土壤物理和水文性质的管理将改善植物的提取。敏感性分析还暗示,提高根部对锌的吸收能力的策略不一定会成功地提高植物本身的提取率。因此,研究提高土壤中锌的利用率和迁移率与理解和控制植物对锌的吸收一样重要。通常,此类模型可用于识别对有效植物提取(植物或土壤)的限制,并确定商业植物提取是否可行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号