...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >A Precursor to the Solvent Radical Cation MCH~+: Pulse Radiolysis of Liquid Methylcyclohexane (MCH) at 143 K
【24h】

A Precursor to the Solvent Radical Cation MCH~+: Pulse Radiolysis of Liquid Methylcyclohexane (MCH) at 143 K

机译:溶剂自由基阳离子MCH〜+的前驱物:143 K时液体甲基环己烷(MCH)的脉冲辐解

获取原文
获取原文并翻译 | 示例
           

摘要

It is shown by pulse radiolysis that in N_2O-saturated methylcyclohexane (MCH) the solvent radical cation MCH~+ is formed, but in argon-saturated MCH, the olefinic fragment cation methylcyclohexene~+ (MCHexene~+) is obtained. From simulations of the geminate ion kinetics with the t~(-0.6) semiempirical rate law, it is concluded that both cations must have a common precursor: some excited state of MCH~+, called M~(+*). This precursor either fragments to form MCHexene~+ or is quenched, e. g. by N_2O, to form MCH~+, or relaxes in the MCH environment. The corresponding rate constants at 143 K are k_(frag) = (2.5 ± 0.5) * 10~6 s~(-1), k_2(M~(+*) + N_2O) = (3.1 ± 0.5) * 10~7 M~(-1) s~(-1) and k_0 = (3.2 ± 1.6) * 10~5 s~(-1). The mobility of M~(+*) was assumed to correspond to that of the fast MCH~+, i. e. D_(M~(+*)) ≈ D_(MCH~+) = (1.8 ± 0.2) * 10~(-6) cm~2 s~(-1). The mobility of the solvated electron, D_(e_(solv)~-), was determined to be (1.6 ± 0.2) * 10~(-6) cm~2 s~(-1). From a Lorentzian line shape analysis of the free ion intercept spectra, the individual yields for both systems were derived. The optimal line parameters are the following: for MCH~+ λ_(max) = 570 nm, hwhm (half-width at half-maximum) = 19000 cm~(-1); for MCHexene~+ λ_(max) = 450 nm, hwhm = 5500 cm~(-1); and for e_(solv)~- λ_(max) = 1900 nm, hwhm = 4500 cm~(-1). Using the known free ion yield (G_(fi) = 0.06 ± 0.015 (100 eV)~(-1)) the absorption coefficients are calculated to be: ∈(MCHexene~+)_(450nm) = 2260 ± 200 M~(-1) cm~(-1), ∈(MCH~+)_(570nm) = 1910 ± 150 M~(-1) cm~(-1), ∈(e_(solv)~-)_(700nm) = 1100 ± 50 M~(-1) cm~(-1), and ∈(M~(+*))_(600nm) = 700 ± 50 M~(-1) cm~(-1). The error limits given are due to the line shape analysis only. There is an additional systematic effect due to the error-limit for the G_(fi)-value (±25%): all ∈-values become higher if the G_(fi)-value should be smaller.
机译:通过脉冲辐射分解表明,在N_2O饱和的甲基环己烷(MCH)中形成了溶剂自由基阳离子MCH〜+,但是在氩气饱和的MCH中,获得了烯烃片段阳离子甲基环己烯〜(MCHexene〜+)。通过使用t〜(-0.6)半经验速率定律对萌芽离子动力学进行模拟,可以得出结论,两个阳离子必须具有共同的前体:MCH〜+的某些激发态,称为M〜(+ *)。该前体要么断裂形成MCHexene +,要么被淬灭,例如。 G。通过N_2O形成MCH〜+,或在MCH环境中松弛。 143 K处对应的速率常数为k_(frag)=(2.5±0.5)* 10〜6 s〜(-1),k_2(M〜(+ *)+ N_2O)=(3.1±0.5)* 10〜7 M〜(-1)s〜(-1),k_0 =(3.2±1.6)* 10〜5 s〜(-1)。假设M〜(+ *)的迁移率对应于快速MCH〜+的迁移率,即i。 e。 D_(M〜(+ *))≈D_(MCH〜+)=(1.8±0.2)* 10〜(-6)cm〜2 s〜(-1)。溶剂化电子的迁移率D_(e_(solv)〜-)被确定为(1.6±0.2)* 10〜(-6)cm〜2 s〜(-1)。从自由离子拦截光谱的洛伦兹线形分析中,得出两个系统的单个产率。最佳的线参数如下:对于MCH〜+λ_(max)= 570 nm,hwhm(半最大值处的半宽度)= 19000 cm〜(-1);对于MCHexene〜+λ_(max)= 450 nm,hwhm = 5500 cm〜(-1);对于e_(solv)〜-λ_(max)= 1900 nm,hwhm = 4500 cm〜(-1)。使用已知的自由离子产率(G_(fi)= 0.06±0.015(100 eV)〜(-1)),吸收系数计算为:ε(MCHexene〜+)_(450nm)= 2260±200 M〜( -1)cm〜(-1),∈(MCH〜+)_(570nm)= 1910±150 M〜(-1)cm〜(-1),∈(e_(solv)〜-)_(700nm) = 1100±50 M〜(-1)cm〜(-1),∈(M〜(+ *))_(600nm)= 700±50 M〜(-1)cm〜(-1)。给出的误差极限仅由于线形分析。由于G_(fi)值的误差限制(±25%),还有其他系统性影响:如果G_(fi)值较小,则所有ε值都将变高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号