【24h】

LEFT QUASI-MORPHIC RINGS

机译:左拟态环

获取原文
获取原文并翻译 | 示例
           

摘要

A ring R is called left quasi-morphic if, for each a epsilon R, there exist b and c in R such that Ra = 1(b) and 1(a) = Rc (where 1(x) is the left annihilator). Every (von Neumann) regular ring is left quasi-morphic, as is every left morphic ring (b = c above). The main theorem of this paper is that, in a left quasi-morphic ring, finite intersections and finite sums of principal left ideals are again principal. This leads to structure theorems when mild finiteness conditions are imposed. In an earlier paper, the first two authors showed that left and right quasi-morphic rings have both these properties (on both sides), and used this to give a new characterization of the artinian principal ideal rings: They are just the left and right quasi-morphic rings with ACC on principal annihilators r(a), a epsilon R. Some extensions of this result are presented here.
机译:如果对于每个εR,R中都存在b和c,使得Ra = 1(b)和1(a)= Rc(其中1(x)是左an灭子),则将R称为左准晶。每个(冯·诺依曼)正则环都是左准准环,每个左态环都是(上面b = c)。本文的主要定理是,在左拟晶环中,主左理想的有限交点和有限和再次成为主。当施加适度的有限性条件时,这导致结构定理。在较早的论文中,前两位作者表明左和右准晶环同时具有这两个属性(在两侧上),并以此为对阿蒂尼亚原理的理想环的新描述:它们分别是左和右在主an灭子r(a),εR上具有ACC的准晶环。此处给出了该结果的一些扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号