...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Indentation size effect at the initiation of plasticity for ceramics and metals
【24h】

Indentation size effect at the initiation of plasticity for ceramics and metals

机译:陶瓷和金属塑性开始时的压痕尺寸效应

获取原文
获取原文并翻译 | 示例
           

摘要

In nanoindentation, the plasticity size effect has been observed for several years, where a higher hardness is measured as contact size decreases. For spherical indenters, Lim and Chaudhri (1999 Phil. Mag. 79 2979) first showed that the entire flow curve appears at higher contact pressures for smaller radius indenters in copper. However, few papers have reported the initial yield size effect due to the difficulty in defining the yield point. Recently, Spary et al (2006 Phil. Mag. 86 5581) demonstrated that the initial yield strength of metals increases linearly with inverse cube root of indenter radius, by nanoindentation together with finite elemental modelling. Here, we use a clear method to determine the onset of plasticity in spherical nanoindentation without the uncertainties of modelling. This enables us to measure the yield pressure of tungsten metal and a series of ceramics with a high degree of accuracy and over a large range of indenter radii ( hundreds of nanometres to several tens of micrometres). Our data of all ceramics and metals show clearly that there is a significant yield strength enhancement, which is inversely proportional to the cube root of the indenter radius. Normalizing the data for each material by its yield pressure for an infinite radius indenter, we find that the data for metals and ceramics fall on lines of different slope, indicating that material parameters influence the indentation yield strength size effect as well as the geometrical size effect.
机译:在纳米压痕中,已经观察到可塑性尺寸效应数年,随着接触尺寸的减小,可测得更高的硬度。对于球形压头,Lim和Chaudhri(1999 Phil。Mag。79 2979)首先表明,对于较小半径的铜压头,整个流量曲线在较高的接触压力下出现。但是,由于难以定义屈服点,很少有论文报道了初始的屈服尺寸效应。最近,Spary等人(2006 Phil。Mag。86 5581)证明,通过纳米压痕和有限元建模,金属的初始屈服强度随压头半径的立方立方根倒数线性增加。在这里,我们使用一种清晰的方法来确定球形纳米压痕中可塑性的开始,而没有建模的不确定性。这使我们能够以高精度和宽范围的压头半径(数百纳米到几十微米)测量钨金属和一系列陶瓷的屈服压力。我们对所有陶瓷和金属的数据清楚地表明,屈服强度有显着提高,与压头半径的立方根成反比。通过无限半径压头的每种材料的屈服压力对每种材料的数据进行归一化,我们发现金属和陶瓷的数据位于不同斜率的直线上,这表明材料参数会影响压痕屈服强度尺寸效应以及几何尺寸效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号