...
首页> 外文期刊>Journal of the Optical Society of America, A. Optics, image science, and vision >A fast and high-order accurate surface perturbation method for nanoplasmonic simulations: basic concepts, analytic continuation and applications
【24h】

A fast and high-order accurate surface perturbation method for nanoplasmonic simulations: basic concepts, analytic continuation and applications

机译:一种用于纳米等离子体模拟的快速高阶精确表面扰动方法:基本概念,解析连续性和应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we demonstrate that rigorous high-order perturbation of surfaces (HOPS) methods coupled with analytic continuation mechanisms are particularly well-suited for the assessment and design of nanoscale devices (e.g., biosensors) that operate based on surface plasmon resonances generated through the interaction of light with a periodic (metallic) grating. In this connection we explain that the characteristics of the latter are perfectly aligned with the optimal domain of applicability of HOPS schemes, as these procedures can be shown to be the methods of choice for low to moderate wavelengths of radiation and grating roughness that is representable by a few (e.g., tens of) Fourier coefficients. We argue that, in this context, the method can, for instance, produce full and precise reflectivity maps in computational times that are orders of magnitude faster than those of alternative numerical schemes (e.g., the popular "C-method," finite differences, integral equations or finite elements). In this initial study we concentrate on the description of the basic principles that underlie the solution scheme, including those that relate to analytic continuation procedures. Within this framework, we explain how, in spite of conventional wisdom to the contrary, the resulting perturbative techniques can provide a most valuable tool for practical investigations in plasmonics. We demonstrate this with some examples that have been previously discussed in the literature (including treatments of the reflectivity and band gap structure of some simple geometries) and extend this to demonstrate the wider applicability of the proposed approach.
机译:在本文中,我们证明,严格的高阶表面扰动(HOPS)方法与解析连续机制相结合,特别适合于评估和设计纳米尺度设备(例如,生物传感器),该设备基于通过辐射产生的表面等离子体激元共振进行操作。光与周期性(金属)光栅的相互作用。在这方面,我们解释说后者的特性与HOPS方案适用性的最佳领域完全吻合,因为这些程序可以证明是低至中等波长的辐射和光栅粗糙度的选择方法,可以用以下方法表示:几个(例如数十个)傅立叶系数。我们认为,在这种情况下,例如,该方法可以在计算时间内生成完整而精确的反射率图,比其他数值方案(例如,流行的“ C方法”,有限差分,积分方程或有限元)。在此初步研究中,我们着重描述解决方案基础的基本原理,包括与分析连续性程序相关的原理。在此框架内,我们将解释,尽管有相反的传统观点,但所产生的摄动技术如何能够为等离激元学的实际研究提供最有价值的工具。我们用一些先前在文献中已经讨论过的例子(包括对一些简单几何形状的反射率和带隙结构的处理)来证明这一点,并将其扩展以证明所提出方法的更广泛的适用性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号