...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Interfacial Metal Flux in Ligand Mixtures. 1. The Revisited Reaction Layer Approximation: Theory and Examples of Applications
【24h】

Interfacial Metal Flux in Ligand Mixtures. 1. The Revisited Reaction Layer Approximation: Theory and Examples of Applications

机译:配体混合物中的界面金属通量。 1.再谈反应层近似:理论和应用实例

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the physical chemical behaviors of each metal species in a solution containing a mixture of ligands is a prerequisite, e.g., for studying metal bioavailability or making predictions on dynamic risk assessment in ecotoxicology. For many years, the reaction layer concept has been used fruitfully due to its simplicity for understanding and making predictions on diffusion/reaction processes. Until now, it has been applied mainly to solutions containing one ligand. Here, we reconsider the fundamentals of this approach and extend it to multiligand systems. It is shown that each metal complex has its own reaction layer (so-called composite reaction layer), which results from the interplay of this particular complex with all the other complexes. Moreover, it is shown that the overall metal flux can be computed by assuming the existence of one single fictitious equivalent reaction layer thickness for the whole of the complexes. This equivalent reaction layer is a mathematical combination of all the composite reaction layers. Simple analytical equations are obtained, which make it possible to readily interpret the role of the various types of metal species in a mixture. The revisited reaction layer approach, denoted as the reaction layer approximation (RLA), is validated by comparing the total metal flux, the individual fluxes of each metal species, and their concentration profiles computed by the RLA with those obtained by a rigorous mathematical approach. The examples of Pb(II) in a modified Aquil medium and of Cu(II) in solutions of nitrilotriacetic acid and N-(2-carboxyphenyl)glycine are treated in detail. In particular, an original result is obtained with the Cu/NTA/N-(2-carboxyphenyl)glycine system, namely an unexpected flux enhancement is observed, which is specific to solutions with ligand mixtures. The corresponding physicochemical mechanism is not readily understood by the rigorous mathematical (either numerical or analytical) solutions due to their involved combination of parameters. On the other hand, we show that, due to the simplicity of the RLA concept, the RLA facilitates elucidation of the physicochemical mechanism underlying complicated processes.
机译:例如,对于研究金属的生物利用度或对生态毒理学中的动态风险评估做出预测,了解先决条件是了解包含配体混合物的溶液中每种金属物质的物理化学行为。多年来,反应层概念因其易于理解和预测扩散/反应过程而得到了广泛应用。到目前为止,它主要用于含一种配体的溶液。在这里,我们重新考虑此方法的基础,并将其扩展到多配体系统。结果表明,每种金属络合物都有自己的反应层(所谓的复合反应层),这是由于这种特定的络合物与所有其他络合物的相互作用所致。而且,表明可以通过假设对于整个配合物存在一个单一的虚拟等效反应层厚度来计算总金属通量。该等效反应层是所有复合反应层的数学组合。获得了简单的分析方程式,从而可以轻松地解释混合物中各种类型金属物种的作用。通过比较总金属通量,每种金属物质的各个通量以及由RLA计算的浓度曲线与通过严格的数学方法获得的浓度曲线,可以验证重新访问的反应层方法(称为反应层近似(RLA))。详细处理了改性Aquil介质中的Pb(II)和次氮基三乙酸和N-(2-羧基苯基)甘氨酸溶液中的Cu(II)的实例。特别地,使用Cu / NTA / N-(2-羧基苯基)甘氨酸系统获得原始结果,即观察到意外的通量增强,这对于具有配体混合物的溶液是特定的。严格的数学(数值或分析)解决方案由于其涉及的参数组合,因此不容易理解相应的理化机理。另一方面,我们表明,由于RLA概念的简单性,RLA有助于阐明复杂过程背后的物理化学机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号